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9.3

Leverage

Recall in MLR that Ŷ = X(XTX)−1XTY = HY where
H is the hat-matrix

The leverage value for the ith observation is defined
as:

hi = Hii

Can show that Var(ei) = σ2(1− hi), where
ei = Yi − Ŷi is the residual for the ith observation

1
n ≤ hi ≤ 1, 1 ≤ i ≤ n and h̄ =

∑n
i=1

hi
n = p

n ⇒ a
“rule of thumb" is that leverages of more than 2p

n
should be looked at more closely

Notes

Notes

Notes
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Leverage Values of Species ∼ Elev + Adj

●

●

●●

●

●● ●● ● ●

●

●
●

●

●

●
●

●

●●

●

● ●●● ●● ● ●

0 500 1000 1500

0

1000

2000

3000

4000

5000

Elevation

A
dj

ac
en

t

●

●

Multiple Linear
Regression V

Model Diagnostics:
Influential Points

Non-Constant
Variance &
Transformation

Regression with
Both Quantitative
and Qualitative
Predictors

Polynomial
Regression

9.5

Studentized Residuals

As we have seen Var(ei) = σ2(1− hi), this suggests the
use of ri = ei

σ̂
√

(1−hi)

ri’s are called studentized residuals. ri’s are
sometimes preferred in residual plots as they have
been standardized to have equal variance.

If the model assumptions are correct then Var(ri) = 1
and Corr(ei, ej) tends to be small
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Studentized Residuals of Species ∼ Elev + Adj
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9.7

Studentized Deleted Residuals

For a given model, exclude the observation i and
recompute β̂(i), σ̂(i) to obtain Ŷi(i)

The observation i is an outlier if Ŷi(i) − Yi is “large”

Can show
Var(Ŷi(i) − Yi) = σ2(i)

(
1 + xTi (XT

(i)X(i))
−1xi

)
=

σ2
(i)

1−hi

Define the Studentized Deleted Residuals as

ti =
Ŷi(i) − Yi
σ̂2(i)/1− hi

=
Ŷi(i) − Yi

MSE(i)(1− hi)−1

which are distributed as a tn−p−1 if the model is
correct and ε ∼ N(0, σ2I)
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Jackknife Residuals of Species ∼ Elev + Adj
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Influential Observations

DFFITS

Difference between the fitted values Ŷi and the
predicted values Ŷi(i)

DFFITSi =
Ŷi−Ŷi(i)√
MSE(i)hi

Concern if absolute value greater than 1 for small
data sets, or greater than 2

√
p/n for large data sets

Notes

Notes

Notes
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DFFITS of Species ∼ Elev + Adj
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Residual Plot of Species ∼ Elev + Adj
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Residual Plot After Square Root Transformation
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Regression with Both Quantitative and Qualitative
Predictors

Multiple Linear Regression

Y = β0 +β1X1 +β2X2 + · · ·+βp−1Xp−1 +ε, ε ∼ N(0, σ2)

X1, X2, · · · , Xp−1 are the predictors.

Question: What if some of the predictors are qualitative
(categorical) variables?

⇒We will need to create dummy (indicator) variables
for those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)
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Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assis-
tant Professors, Associate Professors and Profes-
sors in a college in the U.S. The data were collected
as part of the on-going effort of the college’s admin-
istration to monitor salary differences between male
and female faculty members.
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Predictors

We have three categorical variables, namely, rank,
discipline, and sex.

Notes

Notes
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Dummy Variable
For binary categorical variables:

Xsex =

{
0 if sex = male,
1 if sex = female.

Xdiscip =

{
0 if discip = A,
1 if discip = B.

For categorical variable with more than two categories:

Xrank1 =

{
0 if rank = Assistant Prof,
1 if rank = Associated Prof.

Xrank2 =

{
0 if rank = Associated Prof,
1 if rank = Full Prof.
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Design Matrix

With the design matrix X, we can now use method
of least squares to fit the model Y = Xβ + ε
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Model Fit

Question: Interpretation of these dummy variables (e.g.
β̂rankAssocProf)?
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lm(salary ∼ sex ∗ yrs.since.phd)
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Polynomial Regression

Suppose we would like to model the relationship between
response Y and a predictor X as a pth degree polynomial
in X:

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βpX

p
i + ε

We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix
takes the following form:

X =


1 X1 X2

1 · · · Xp
1

1 X2 X2
2 · · · Xp

2
... · · · . . .

...
...

1 Xn X2
n · · · Xp

n
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Housing Values in Suburbs of Boston Data Set
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Polynomial Regression Fits
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