Lecture 9 Multiple Linear Regression V

Reading: Chapter 13

STAT 8020 Statistical Methods II September 17, 2020

Notes

Whitney Huang Clemson University

Multiple Linear Regression V

Leverage

Recall in MLR that $\hat{Y}={X}({X}^T{X})^{-1}{X}^T{Y}=H{Y}$ where H is the hat-matrix

• The leverage value for the *i*_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = Y_i \hat{Y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h} = \sum_{i=1}^{n} \frac{h_i}{n} = \frac{p}{n} \Rightarrow a$ "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

tiple Linear gression V CMSCINA I Diagnostics: ntial Points Constant toe & formation sistion with Quantitative

Notes

Leverage Values of Species $\sim \texttt{Elev} + \texttt{Adj}$

Notes

Notes

Studentized Residuals

As we have seen ${\rm Var}(e_i)=\sigma^2(1-h_i),$ this suggests the use of $r_i=\frac{e_i}{\hat\sigma\sqrt{(1-h_i)}}$

- r_i 's are called **studentized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(e_i, e_j)$ tends to be small

odel Diagnostics: fluential Points	

Hegression

Studentized Residuals of Species $\sim \texttt{Elev} + \texttt{Adj}$

Studentized Deleted Residuals

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}, \hat{\sigma}_{(i)}$ to obtain $\hat{Y}_{i(i)}$
- The observation i is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"

• Can show

$$\operatorname{Var}(\hat{Y}_{i(i)} - Y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \frac{\sigma_{(i)}^2}{1 - h_i}$$

• Define the Studentized Deleted Residuals as

$$t_i = \frac{\hat{Y}_{i(i)} - Y_i}{\hat{\sigma}^2_{(i)}/1 - h_i} = \frac{\hat{Y}_{i(i)} - Y_i}{\mathsf{MSE}_{(i)}(1 - h_i)^{-1}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim {\rm N}({\bf 0},\sigma^2 {\pmb I})$

	Multiple Linear Regression V CLEMS
	Model Diagnostic Influential Points
i	

Notes

Regression V
Model Diagnostics: Influential Points
9.8

Multiple Linear

Notes

Notes

Influential Observations

DFFITS

- Difference between the fitted values $\hat{Y_i}$ and the predicted values $\hat{Y_{i(i)}}$

• DFFITS_i =
$$\frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$$

• Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

DFFITS of Species $\sim {\tt Elev} + {\tt Adj}$

Regression V
CLEMS
Model Diagnostics: Influential Points

.....

Notes

Residual Plot of Species $\sim \texttt{Elev} + \texttt{Adj}$

Regression V
Non-Constant Variance & Transformation
9.11

Notes

Residual Plot After Square Root Transformation

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $X_1, X_2, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create \mbox{dummy} (indicator) variables for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Multiple Linear Regression V
Regression with Both Quantitative and Qualitative Predictors

Notes

Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

> head(Salaries)

Predictors

rank	discipline	yrs.since.phd	yrs.service	sex	salary
Prof	В	19	18	Male	139750
Prof	В	20	16	Male	173200
AsstProf	В	4	3	Male	79750
Prof	В	45	39	Male	115000
Prof	В	40	41	Male	141500
AssocProf	В	6	6	Male	97000
	rank Prof AsstProf Prof Prof AssocProf	rank discipline Prof B Prof B AsstProf B Prof B Prof B AssocProf B	rank discipline yrs.since.phd Prof B 19 Prof B 20 AsstProf B 4 Prof B 45 Prof B 40 AssocProf B 6	rank discipline yrs.since.phd yrs.service Prof B 19 18 Prof B 20 16 AsstProf B 4 3 Prof B 45 39 Prof B 40 41 AssocProf B 6 6	rank discipline yrs.since.phd yrs.service sex Prof B 19 18 Male Prof B 20 16 Male AsstProf B 4 3 Male Prof B 45 39 Male Prof B 40 41 Male AssocProf B 6 6 Male

Transformation Regression with
Both Quantitative and Qualitative
Polynomial

Multiple Linea

Notes

<pre>> summary(Salaries)</pre>		
rank discipl	ine yrs.since.phd	yrs.service
AsstProf : 67 A:181	Min. : 1.00	Min. : 0.00
AssocProf: 64 B:216	1st Qu.:12.00	1st Qu.: 7.00
Prof :266	Median :21.00	Median :16.00
	Mean :22.31	Mean :17.61
	3rd Qu.:32.00	3rd Qu.:27.00
	Max. :56.00	Max. :60.00
sex salary		
Female: 39 Min. : 5	7800	
Male :358 1st Ou.: 9	1000	
Median :10	7300	
Mean :11	3706	
3rd 0u :13	4185	
Max :23	1545	
Max25	1313	
We have three esta	antical variables	nomoly
we have three cate	goncal variables,	namely, rank,
discipline, and	sex.	

Regression V
LEMS
IVERSIT
egression with oth Quantitative nd Qualitative
redictors

Dummy Variable

For binary categorical variables:

$$\begin{split} X_{\text{sex}} &= \begin{cases} 0 & \text{if sex = male,} \\ 1 & \text{if sex = female.} \end{cases} \\ X_{\text{discip}} &= \begin{cases} 0 & \text{if discip = A,} \\ 1 & \text{if discip = B.} \end{cases} \end{split}$$

For categorical variable with more than two categories:

$$X_{\text{rank1}} = \begin{cases} 0 & \text{if rank} = \text{Assistant Prof,} \\ 1 & \text{if rank} = \text{Associated Prof.} \end{cases}$$

 $X_{\rm rank2} = \begin{cases} 0 & \text{if rank = Associated Prof,} \\ 1 & \text{if rank = Full Prof.} \end{cases}$

Multiple Linear Regression V CLEMS
Regression with Both Quantitative and Qualitative Predictors

Notes

Design Matrix

>	head(X)				
	(Intercept)	rankAssocProf	rankProf	disciplineB	yrs.since.phd
1	1	0	1	1	19
2	1	0	1	1	20
3	1	0	0	1	4
4	1	0	1	1	45
5	1	0	1	1	40
6	1	1	0	1	6
	yrs.service	sexMale			
1	18	1			
2	16	1			
3	3	1			
4	39	1			
5	41	1			
6	6	1			
C	•				
	With the design matrix X, we can now use method				
	of least actions to fit the model $V = V \theta$				
	or least squares to in the model $Y = X\beta + \varepsilon$				

Notes

Model Fit

Coefficients:					
	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	70738.7	3403.0	20.787	< 2e-16	***
rankAssocProf	12907.6	4145.3	3.114	0.00198	**
rankProf	45066.0	4237.5	10.635	< 2e-16	***
disciplineB	14417.6	2342.9	6.154	1.88e-09	***
yrs.since.phd	535.1	241.0	2.220	0.02698	*
yrs.service	-489.5	211.9	-2.310	0.02143	*
sexFemale	-4783.5	3858.7	-1.240	0.21584	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22540 on 390 degrees of freedom Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463 F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

Question: Interpretation of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)?

Regression V CLEMS Addel Diagnostic nfluential Points Von-Constant /ariance & transformation Regression with Soft Quantitative nd Qualitative Predictors

$\texttt{lm}(\texttt{salary} \sim \texttt{sex} * \texttt{yrs}, \texttt{since}, \texttt{phd})$

Notes

Notes

Polynomial Regression

Suppose we would like to model the relationship between response Y and a predictor X as a p_{th} degree polynomial in X:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon$$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	X_1 X_2	$X_1^2 \\ X_2^2$	 	$\begin{pmatrix} X_1^p \\ X_2^p \end{pmatrix}$
X =	$\left \begin{array}{c} \vdots \\ 1 \end{array} \right $	$\dots X_n$	X_n^2	:	$\left. \begin{array}{c} \vdots \\ X_n^p \end{array} \right)$

Housing Values in Suburbs of Boston Data Set

Polynomial Regression Fits

Multiple Linear Regression V
Polynomial Regression
9.22

Notes

Notes