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Recall in MLR that ¥ = X (X7 X)~'XTY = HY where
Model Diagnostics:

H is the hat-matrix Influential Points

@ The leverage value for the iy, observation is defined
as:
hi = Hy;

@ Can show that Var(e;) = o2(1 — h;), where
e; = Y; — Y; is the residual for the iy, observation

1 X . 7 n h; _p
@ - <h <1, 1<i<nandh=3 7 =%2=a

i=1 n

“rule of thumb" is that leverages of more than %”
should be looked at more closely
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As we have seen Var(e;) = o?(1 — h;), this suggests the
use of r; = Z

o r;’s are called studentized residuals. r;’s are
sometimes preferred in residual plots as they have
been standardized to have equal variance.

o If the model assumptions are correct then Var(r;) = 1
and Corr(e;, e;) tends to be small
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Studentized Deleted Residuals A
@ For a given model, exclude the observation i and CLEMS@N
recompute B;), 6(;) to obtain Y;;

@ The observation i is an outlier if Yi(,-) —Y; is “large”

@ Can show
Var (Vi) — i) = o, (1+ 2 (XT) X)) 1) = 17

o Define the Studentized Deleted Residuals as

b Vi = Vi Yy — Y
‘ ﬁ'(Ql)/l — h; MSE(Z)(l - hi)_l

which are distributed as a t,,—,—1 if the model is
correct and £ ~ N(0, 01)
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DFFITS Influential Points

o Difference between the fitted values Y; and the

predicted values Yy,

Yi—Yiw

/MSE ;)i

@ Concern if absolute value greater than 1 for small
data sets, or greater than 2,/p/n for large data sets

@ DFFITS; =
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DFFITS of Species ~ Elev + Adj

Influence Diagnostics for Species

Jhreshold: 0.63
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Regression with Both Quantitative and Qualitative ]
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Y = 6o+ 51 X1+ B Xo+ - "Fﬁplep,] +e, e~ N(07O'2)

X1, Xo, -+, X,—1 are the predictors.

Question: What if some of the predictors are qualitative
(categorical) variables?

= We will need to create dummy (indicator) variables
for those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)

Salaries for Professors Data Set Wultiple Linear

Regression V
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The 2008-09 nine-month academic salary for Assis-
tant Professors, Associate Professors and Profes-
sors in a college in the U.S. The data were collected
as part of the on-going effort of the college’s admin-
istration to monitor salary differences between male
and female faculty members.

> head(Salaries)
rank discipline yrs.since.phd yrs.service sex salary

1 Prof B 19 18 Male 139750
2 Prof B 20 16 Male 173200
3 AsstProf B 4 3 Male 79750
4 Prof B 45 39 Male 115000
5 Prof B 40 41 Male 141500
6 AssocProf B 6 6 Male 97000

914
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> summary(Salaries)

rank discipline yrs.since.phd yrs.service
AsstProf : 67 A:181 Min. :1.00  Min. 1 0.00
AssocProf: 64  B:216 1st Qu.:12.00 1st Qu.: 7.00
Prof 1266 Median :21.00 Median :16.00

Mean :22.31  Mean :17.61
3rd Qu.:32.00 3rd Qu.:27.00
Max. :56.00  Max. :160.00

sex salary
Female: 39  Min. : 57800
Male :358 1st Qu.: 91000
Median :107300
Mean 1113706
3rd Qu.:134185
Max . 1231545

We have three categorical variables, namely, rank,
discipline, and sex.
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Dummy Variable

For binary categorical variables:

0

}(sex =

Xdiscip =

1

0
1

if sex = male,

if sex = female.

if discip = A,

if discip =B.

For categorical variable with more than two categories:

KNrank1 =

KNrank2 =

Design Matrix

> head(X)

0 if rank = Assistant Prof,
1 if rank = Associated Prof.

0 if rank = Associated Prof,
1 if rank = Full Prof.

(Intercept) rankAssocProf rankProf disciplineB yrs.since.phd

1
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With the design matrix X, we can now use method
of least squares to fit the model Y = X3 + ¢

Model Fit

Coefficients:

Estimate Std. Error t value

(Intercept) 70738.7 3403
rankAssocProf 12907.6 4145.
rankProf 45066.0 4237.
disciplineB 14417.6 2342.
yrs.since.phd 535.1 241.
yrs.service -489.5 211.
sexFemale -4783.5 3858.

Signif. codes: @ ‘***’ 9.001

.0 20.787
3 3.114
5 10.635
9 6.154
0 2.220
9 -2.310
7 -1.240

xk20.01

Pr(>1tl)
< 2e-16
0.00198
< 2e-16

1.88e-09
0.02698
0.02143
0.21584

‘*?0.05 .

0.1 ¢ 1

Residual standard error: 22540 on 390 degrees of freedom

Multiple R-squared:

0.4547,

Adjusted R-squared:

F-statistic: 54.2 on 6 and 390 DF,

Question: Interpretation of these dummy variables (e.g.

ﬂrankAssocProf)?

0.4463

p-value: < 2.2e-16
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e Notes
Suppose we would like to model the relationship between CLEMS@N
response Y and a predictor X as a py, degree polynomial
in X:
Yi = o+ BLXi + BoXP 4+ BpX] e
We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix S
takes the following form:
1 x X3 - XP
1 Xy X2 - XJ
X — . . 2 ) .2
1 X, X2 - Xk
Housing Values in Suburbs of Boston Data Set ]
Notes
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Median value of owner-occupied homes
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