Lecture 10 Multiple Linear Regression VI

Reading: Chapter 13

STAT 8020 Statistical Methods II September 22, 2020

Agenda

(1) Regression with Both Quantitative and Qualitative Predictors

(2) Polynomial Regression

Multiple Linear Regression

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p-1} X_{p-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

$X_{1}, X_{2}, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?
\Rightarrow We will need to create dummy (indicator) variables for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Predictors

> summary(Salaries)
rank discipline yrs.since.phd yrs.service
AsstProf : 67 A:181 Min. : 1.00 Min. : 0.00
AssocProf: 64 B:216 1st Qu.:12.00 1st Qu.: 7.00
Prof :266 Median :21.00 Median :16.00
Mean :22.31 Mean :17.61
3rd Qu.:32.00 3rd Qu.:27.00
Max. :56.00 Max. :60.00
sex salary
Female: 39 Min. : 57800
Male :358 1st Qu.: 91000
Median :107300
Mean :113706
3rd Qu.:134185
Max. :231545
We have three categorical variables, namely, rank, discipline, and sex.

Dummy Variable

For binary categorical variables:

$$
\begin{aligned}
& X_{\text {sex }}= \begin{cases}1 & \text { if sex }=\text { male }, \\
0 & \text { if sex }=\text { female } .\end{cases} \\
& X_{\text {discip }}= \begin{cases}0 & \text { if discip }=A, \\
1 & \text { if discip }=\mathrm{B}\end{cases}
\end{aligned}
$$

For categorical variable with more than two categories:

$$
\begin{aligned}
& X_{\text {rank1 }}= \begin{cases}0 & \text { if rank }=\text { Assistant Prof }, \\
1 & \text { if rank }=\text { Associated Prof. }\end{cases} \\
& X_{\text {rank } 2}= \begin{cases}0 & \text { if rank }=\text { Associated Prof }, \\
1 & \text { if rank }=\text { Full Prof. }\end{cases}
\end{aligned}
$$

Design Matrix

$>$ head (X)

| (Intercept) | rankAssocProf | rankProf | disciplineB | yrs.since.phd |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 1 | 1 | 19 |
| 1 | 0 | 1 | 1 | 20 |
| 1 | 0 | 0 | 1 | 4 |
| 1 | 0 | 1 | 1 | 45 |
| 1 | 0 | 1 | 1 | 40 |
| 1 | 1 | 0 | 1 | 6 |

With the design matrix \boldsymbol{X}, we can now use method of least squares to fit the model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$

Model Fit:

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept)	67884.32	4536.89	14.963	$<2 \mathrm{e}-16^{* * *}$	
disciplineB	13937.47	2346.53	5.940	$6.32 \mathrm{e}-09^{* * *}$	
rankAssocProf	13104.15	4167.31	3.145	$0.00179^{* *}$	
rankProf	46032.55	4240.12	10.856	$<2 \mathrm{e}-16^{* * *}$	
sexMale	4349.37	3875.39	1.122	0.26242	
yrs.since.phd	61.01	127.01	0.480	0.63124	

Signif. codes:
0 '***' 0.001 ‘**' 0.01 '*’ 0.05 '.' 0.1 ' ' 1
Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g. $\left.\hat{\beta}_{\text {rankAssocProf }}\right)$? Interpretation of the intercept?

Model Fit for Assistant Professors

9-month salary

Regression with Both Quantitative and
Qualitative Predictors

Model Fit for Associate Professors

9-month salary

Regression with Both Quantitative and
Qualitative Predictors

Model Fit for Full Professors

9-month salary

Regression with Both Quantitative and
Qualitative Predictors

$\operatorname{lm}($ salary \sim sex $*$ yrs.since.phd)

9-month salary

$\operatorname{lm}($ salary \sim disp $*$ yrs.since.phd $)$

9-month salary

Regression with Both Quantitative and
Qualitative Predictors

Polynomial Regression

Suppose we would like to model the relationship between response Y and a predictor X as a $p_{\text {th }}$ degree polynomial in X :

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\cdots+\beta_{p} X_{i}^{p}+\varepsilon
$$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$
\boldsymbol{X}=\left(\begin{array}{ccccc}
1 & X_{1} & X_{1}^{2} & \cdots & X_{1}^{p} \\
1 & X_{2} & X_{2}^{2} & \cdots & X_{2}^{p} \\
\vdots & \cdots & \ddots & \vdots & \vdots \\
1 & X_{n} & X_{n}^{2} & \cdots & X_{n}^{p}
\end{array}\right)
$$

Housing Values in Suburbs of Boston Data Set

Quantitative and
Quallititive Frecictors
Polynomial Regression

Polynomial Regression Fits

