
Multiple Linear
Regression VI

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

10.1

Lecture 10
Multiple Linear Regression VI
Reading: Chapter 13

STAT 8020 Statistical Methods II
September 22, 2020

Whitney Huang
Clemson University



Multiple Linear
Regression VI

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

10.2

Agenda

1 Regression with Both Quantitative and Qualitative
Predictors

2 Polynomial Regression



Multiple Linear
Regression VI

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

10.3

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

Y = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + ε, ε ∼ N(0, σ2)

X1, X2, · · · , Xp−1 are the predictors.

Question: What if some of the predictors are qualitative
(categorical) variables?

⇒We will need to create dummy (indicator) variables for
those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)
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Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant
Professors, Associate Professors and Professors in a
college in the U.S. The data were collected as part of the
on-going effort of the college’s administration to moni-
tor salary differences between male and female faculty
members.
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Predictors

We have three categorical variables, namely, rank,
discipline, and sex.
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Dummy Variable

For binary categorical variables:

Xsex =

{
1 if sex = male,
0 if sex = female.

Xdiscip =

{
0 if discip = A,
1 if discip = B.

For categorical variable with more than two categories:

Xrank1 =

{
0 if rank = Assistant Prof,
1 if rank = Associated Prof.

Xrank2 =

{
0 if rank = Associated Prof,
1 if rank = Full Prof.
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Design Matrix

With the design matrix X, we can now use method of
least squares to fit the model Y =Xβ + ε
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Model Fit:
lm(salary ∼ rank+ sex+ discipline+ yrs.since.phd)

Question: Interpretation of the slopes of these dummy
variables (e.g. β̂rankAssocProf)? Interpretation of the intercept?
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Model Fit for Assistant Professors
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Model Fit for Associate Professors
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Model Fit for Full Professors
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lm(salary ∼ sex ∗ yrs.since.phd)
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lm(salary ∼ disp ∗ yrs.since.phd)

0 10 20 30 40 50

100000

150000

200000

9−month salary

Years since PhD

●

●

Female
Male



Multiple Linear
Regression VI

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

10.14

Polynomial Regression

Suppose we would like to model the relationship between
response Y and a predictor X as a pth degree polynomial in X:

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βpX

p
i + ε

We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix takes
the following form:

X =


1 X1 X2

1 · · · Xp
1

1 X2 X2
2 · · · Xp

2
... · · ·

. . .
...

...
1 Xn X2

n · · · Xp
n


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Housing Values in Suburbs of Boston Data Set
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Polynomial Regression Fits
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