Lecture 10 Multiple Linear Regression VI Reading: Chapter 13

STAT 8020 Statistical Methods II September 22, 2020 Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Whitney Huang Clemson University

Agenda

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Regression with Both Quantitative and Qualitative Predictors

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $X_1, X_2, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create **dummy (indicator) variables** for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Regression with Both Quantitative and Qualitative Predictors

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500
6	AssocProf	В	6	6	Male	97000

Predictors

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

<pre>> summary(Sal</pre>	aries)				
rank	discipline	yrs.sir	nce.phd	yrs.se	ervice
AsstProf : 6	7 A:181	Min.	: 1.00	Min.	: 0.00
AssocProf: 6	4 B:216	1st Qu	.:12.00	1st Qu	.: 7.00
Prof :26	6	Median	:21.00	Median	:16.00
		Mean	:22.31	Mean	:17.61
		3rd Qu	.:32.00	3rd Qu	.:27.00
		Max.	:56.00	Max.	:60.00
sex	salary				
Female: 39	Min. : 5780	0			
Male :358	1st Qu.: 9100	0			
	Median :10730	0			
	Mean :11370	6			
	3rd Qu.:13418	5			
	Max. :23154	5			

We have three categorical variables, namely, rank, discipline, and sex.

Dummy Variable

For binary categorical variables:

$$X_{\text{sex}} = \begin{cases} 1 & \text{if sex = male,} \\ 0 & \text{if sex = female.} \end{cases}$$

$$X_{\text{discip}} = \begin{cases} 0 & \text{if discip} = A, \\ 1 & \text{if discip} = B. \end{cases}$$

For categorical variable with more than two categories:

$$X_{\text{rank1}} = \begin{cases} 0 & \text{if rank} = \text{Assistant Prof,} \\ 1 & \text{if rank} = \text{Associated Prof.} \end{cases}$$

$$X_{\text{rank2}} = \begin{cases} 0 & \text{if rank} = \text{Associated Prof,} \\ 1 & \text{if rank} = \text{Full Prof.} \end{cases}$$

Regression with Both Quantitative and Qualitative Predictors

Design Matrix

> head(X)

Multiple Linear Regression VI

> Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

· ·					
	(Intercept)	rankAssocProf	rankProf	disciplineB	yrs.since.phd
1	1	0	1	1	19
2	1	0	1	1	20
3	1	0	0	1	4
4	1	0	1	1	45
5	1	0	1	1	40
6	1	1	0	1	6
	yrs.service	sexMale			
1	18	1			
2	16	1			
3	3	1			
4	39	1			
5	41	1			
6	6	1			
	-				

With the design matrix X, we can now use method of least squares to fit the model $Y = X\beta + \varepsilon$

Model Fit:

 $lm(salary \sim rank + sex + discipline + yrs.since.phd)$

Coefficients:						
	Estimate	Std. Error	t value	Pr(>ltl)		
(Intercept)	67884.32	4536.89	14.963	< 2e-16	***	
disciplineB	13937.47	2346.53	5.940	6.32e-09	***	
rankAssocProf	13104.15	4167.31	3.145	0.00179	**	
rankProf	46032.55	4240.12	10.856	< 2e-16	***	
sexMale	4349.37	3875.39	1.122	0.26242		
yrs.since.phd	61.01	127.01	0.480	0.63124		
Signif. codes:						
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and 391 DF, p-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)? Interpretation of the intercept?

Model Fit for Assistant Professors

9-month salary

Years since PhD

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Model Fit for Associate Professors

9-month salary

Years since PhD

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Model Fit for Full Professors

9-month salary

Years since PhD

Regression with Both Quantitative and Qualitative Predictors

$lm(salary \sim sex * yrs.since.phd)$

9-month salary

Years since PhD

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

$lm(salary \sim disp * yrs.since.phd)$

9-month salary

Years since PhD

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Suppose we would like to model the relationship between response Y and a predictor X as a p_{th} degree polynomial in X:

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^p \\ 1 & X_2 & X_2^2 & \cdots & X_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^p \end{pmatrix}$$

Regression with Both Quantitative and Qualitative Predictors

Housing Values in Suburbs of Boston Data Set

Lower status of the population (percent)

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression Fits

Lower status of the population (percent)

Multiple Linear Regression VI

Regression with Both Quantitative and Qualitative Predictors