Advanced Topics I

Lecture 11 Advanced Topics I

STAT 8020 Statistical Methods II September 24, 2020

> Whitney Huang Clemson University

Nonlinear Regression

Non-parametric Regression

Agenda

Advanced Topics I

Nonlinear Regression

lon-parametric Regression

Advanced Topics I

Nonlinear Regression

Non-parametric Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In this lecture we are going to discuss non-linear and non-parametric regression modeling

Population of the United States

Let's look at the USPop data set, a bulit-in data set in R. This is a decennial time-series from 1790 to 2000.

300 50 100 50 0 1800 1850 1900 1950 2000 Census year

U.S. population

Nonlinear Regression

Non-parametric Regression

Logistic Growth Curve

A simple model for population growth is the logistic growth model,

$$Y = m(X, \phi) + \varepsilon$$
$$= \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon$$

We are going to fit a logistic growth curve to the U.S. population data set

Advanced Topics I

Nonlinear Regression

Non-parametric Regression

Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1 = 440.83, \, \hat{\phi}_2 = 1976.63, \, \hat{\phi}_3 = 46.29$$

Nonlinear Regression

Non-parametric Regression

Non-parametric Regression

Let's use the motor-cycle impact data as an illustrative example. This data set is taken from a simulated motor-cycle crash experiment in order to study the efficacy of crash helmets.

Advanced Topics I

Nonlinear Regression

lon-parametric Regression

Non-parametric Regression Fits

The main idea "non-parametric" regression modeling is to fit the data "locally". Therefore, no global structure assumption made when fitting the data.

Advanced Topics I

Nonlinear Regression

lon-parametric Regression

Regression Tree

- Partitioning X-space into sub-regions and fit simple model to each sub-region
- The partitioning pattern is encoded in a tree structure

We will use Major League Baseball Hitters Data from the 1986–1987 season to give you a quick idea of what a regression tree might look like

Advanced Topics I

Nonlinear Regression

Non-parametric Regression

Regression Tree

Advanced Topics I

Nonlinear Regression

Non-parametric Regression

Longley's Economic Regression Data

Advanced Topics I

Nonlinear Regression

Non-parametric Regression

Ridge Regression

We are going to use Longley's data set, which provides a well-known example of multicollinearity, to illustrate Ridge regression.

	GNP.deflator	GNP	Unemployed	Armed.Forces	Population	Year	Employed
1947	83.0	234.289	235.6	159.0	107.608	1947	60.323
1948	88.5	259.426	232.5	145.6	108.632	1948	61.122
1949	88.2	258.054	368.2	161.6	109.773	1949	60.171
1950	89.5	284.599	335.1	165.0	110.929	1950	61.187

Linear Regression Fit

Call: lm(formula = response ~ ., data = trainingData)

Residuals:

1960 1948 1953 1949 1947 1959 1954 1962 1958 -0.2393 0.9650 0.6495 -0.7423 -0.3187 -0.3387 0.1607 -0.1808 1.2922 1956 1957 1955 0.3738 0.3889 -2.0104

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.232e+04	2.332e+04	-0.957	0.382
GNP	-1.596e-01	4.535e-01	-0.352	0.739
Unemployed	-8.768e-02	1.138e-01	-0.770	0.476
Armed.Forces	-5.346e-02	5.626e-02	-0.950	0.386
Population	-1.331e+00	1.322e+00	-1.007	0.360
Year	1.173e+01	1.210e+01	0.970	0.377
Employed	-3.918e+00	3.498e+00	-1.120	0.314

Residual standard error: 1.284 on 5 degrees of freedom Multiple R-squared: 0.9939, Adjusted R-squared: 0.9866 F-statistic: 136.2 on 6 and 5 DF, p-value: 2.251e-05

Nonlinear Regression

Non-parametric Regression

The Predictor Variables are Highly Correlated

Nonlinear Regression

Non-parametric Regression

	GNP	Unemployed	Armed.Forces	Population	Year	Employed
GNP	1.00	0.60	0.45	0.99	1.00	0.98
Unemployed	0.60	1.00	-0.18	0.69	0.67	0.50
Armed.Forces	0.45	-0.18	1.00	0.36	0.42	0.46
Population	0.99	0.69	0.36	1.00	0.99	0.96
Year	1.00	0.67	0.42	0.99	1.00	0.97
Employed	0.98	0.50	0.46	0.96	0.97	1.00

GNP	Unemployed	Armed.Forces	Population	Year
14350.70398	601.69137	98.18754	558.11084	22897.44840
Employed				
1064.78369				

Ridge Regression as Multicollinearity Remedy

- Recall least squares suffers because (X^TX) is almost singular thereby resulting in highly unstable parameter estimates
- Modification of least squares that overcomes multicollinearity problem

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left(\tilde{\boldsymbol{Y}} - \boldsymbol{Z} \boldsymbol{\beta} \right)^T \left(\tilde{\boldsymbol{Y}} - \boldsymbol{Z} \boldsymbol{\beta} \right) \quad \text{s.t.} \ \sum_{j=1}^{p-1} \beta_j^2 \leq t,$$

where Z is assumed to be standardized and \tilde{Y} is assumed to be centered

• Ridge regression results in (slightly) biased but more stable estimates and better prediction performance

Nonlinear Regression

Non-parametric Regression

Ridge Regression Fit

Call: linearRidge(formula = response ~ ., data = trainingData)

Coefficients:

	Estimate	Scale	d estimate	Std.	Error	(scaled)		
(Intercept)	-1.337e+03		NA			NA		
GNP	2.997e-02		1.016e+01		1	.973e+00		
Unemployed	1.614e-02		4.465e+00		2	2.033e+00		
Armed.Forces	8.106e-03		1.833e+00		1	.835e+00		
Population	4.732e-02		1.086e+00		4	.174e+00		
Year	6.940e-01		1.114e+01		1	.356e+00		
Employed	8.821e-01		1.056e+01		3	.988e+00		
	t value (so	caled)	Pr(> t)					
(Intercept)		NA	NA					
GNP		5.151	2.60e-07	* * *				
Unemployed		2.196	0.02807	*				
Armed.Forces		0.999	0.31800					
Population		0.260	0.79480					
Year		8.215	2.22e-16	* * *				
Employed		2.648	0.00809	* *				
Signif. codes	5: 0 '***'	0.001	'**' 0.01	'*'	0.05 '.	' 0.1 ' '	1	
Ridge parameter: 0.01640472, chosen automatically, computed using 2 PCs								
Degrees of fi	Degrees of freedom: model 3.474 , variance 3.104 , residual 3.844							

Advanced Topics I

Nonlinear Regression

Non-parametric Regression