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Count Data

Daily COVID-19 Cases in South Carolina

Number of landfalling hurricanes per hurricane season
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Modeling Count Data

So far we have talked about:

Linear regression: Y = β0 + β1x+ ε, ε i.i.d.∼ N(0, σ2)

Logistic Regression: log( π
1−π ) = β0 + β1x, π = P(Y = 1)

Count data

Counts typically have a right skewed distribution

Counts are not necessarily binary

We could use Poisson Regression to model count data
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Poisson Distribution

If Y follow a Poisson distribution, then we have

P(Y = y) =
e−λλy

y!
, y = 0, 1, 2, · · · ,

where λ is the rate parameter that describe the event
occurrence frequency

E(Y ) = Var(Y ) = λ if Y ∼ Pois(λ), λ > 0

A useful model to describe the probability of a given
number of events occurring in a fixed interval of time or
space
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Poisson Probability Mass Function
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(a)
λ= 0.5
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(b)
λ= 2
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(c)
λ= 5

(a), λ = 0.5: distribution gives highest probability to y = 0
and falls rapidly as y ↑

(b), λ = 2: a skew distribution with longer tail on the right

(c), λ = 5: distribution become more normally shaped
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Flying-Bomb Hits on London During World War II [Clarke,
1946; Feller, 1950]

The City of London was divided into 576 small areas of
one-quarter square kilometers each, and the number of areas
hit exactly k times was counted. There were a total of 537 hits,
so the average number of hits per area was 537

576 = 0.9323. The
observed frequencies in the table below are remarkably close
to a Poisson distribution with rate λ = 0.9323

Hits 0 1 2 3 4 5+
Observed 229 211 93 35 7 1
Expected 226.7 211.4 98.5 30.6 7.1 1.6
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US Landfalling Hurricanes

Source: https://www.kaggle.com/gi0vanni/
analysis-on-us-hurricane-landfalls

https://www.kaggle.com/gi0vanni/analysis-on-us-hurricane-landfalls
https://www.kaggle.com/gi0vanni/analysis-on-us-hurricane-landfalls
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Number of US Landfalling Hurricanes Per Hurricane Season
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Research question: Can the variation of the annual
counts be explained by some environmental variable,
e.g., Southern Oscillation Index (SOI)?
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Some Potentially Relevant Predictors

Southern Oscillation Index (SOI): an indicator of wind
shear

Sea Surface Temperature (SST): an indicator of oceanic
heat content

North Atlantic Oscillation (NAO): an indicator of steering
flow

Sunspot Number (SSN): an indicator of upper air
temperature
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Hurricane Count vs. Environmental Variables
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Poisson Regression

log(λ) = β0 + β1x1 + · · ·+ βp−1xp−1

⇒ Y ∼ Pois(λ = exp(β0 + β1x1 + · · ·+ βp−1xp−1))

Model the logarithm of the mean response as a linear
combination of the predictors

Parameter estimation is carry out using maximum
likelihood method

Interpretation of β′s: every one unit increase in xj , given
that the other predictors are held constant, the λ increases
by a factor of exp(βj)
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US Hurricane Count: Poisson Regression Fit

Poisson Regression Model:

log(λCount) ∼ SOI+ NAO+ SST+ SSN

Table: Coefficients of the Poisson regression model.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5953 0.1033 5.76 0.0000

SOI 0.0619 0.0213 2.90 0.0037
NAO −0.1666 0.0644 −2.59 0.0097
SST 0.2290 0.2553 0.90 0.3698
SSN −0.0023 0.0014 −1.68 0.0928

⇒ every one unit increase in SOI, the hurricane rate increases
by a factor of exp(0.0619) = 1.0639 or 6.39%.
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Issue with Linear Regression Fit

Linear Regression Model:

E(Count) ∼ SOI+ NAO+ SST+ SSN

Table: Coefficients of the linear regression model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8869 0.1876 10.06 0.0000

SOI 0.1139 0.0402 2.83 0.0053
NAO −0.2929 0.1173 −2.50 0.0137
SST 0.4314 0.4930 0.88 0.3830
SSN −0.0039 0.0024 −1.66 0.1000

If we use this fitted model to predict the mean hurricane count,
say SOI = -3, NAO=3, SST = 0, SSN=250

This number does not make sense
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Model Selection


