Poisson Regression

Lecture 19 Poisson Regression

STAT 8020 Statistical Methods II October 27, 2020

> Whitney Huang Clemson University

Poisson Regression

Count Data

Each day shows new cases reported since the previous day \cdot Updated less than 19 hours ago $\,\cdot\,$ Source: <u>The New York Times</u> $\cdot\,$ <u>About this data</u>

• Number of landfalling hurricanes per hurricane season

Modeling Count Data

So far we have talked about:

- Linear regression: $Y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$
- Logistic Regression: $\log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x$, $\pi = P(Y = 1)$

Count data

- Counts typically have a right skewed distribution
- Counts are not necessarily binary

We could use Poisson Regression to model count data

Poisson Distribution

Poisson Regression

• If Y follow a Poisson distribution, then we have

$$P(Y = y) = \frac{e^{-\lambda}\lambda^y}{y!}, \quad y = 0, 1, 2, \cdots,$$

where λ is the rate parameter that describe the event occurrence frequency

•
$$E(Y) = Var(Y) = \lambda \text{ if } Y \sim Pois(\lambda), \quad \lambda > 0$$

 A useful model to describe the probability of a given number of events occurring in a fixed interval of time or space

Poisson Regression

Poisson Probability Mass Function

• (a), $\lambda = 0.5$: distribution gives highest probability to y = 0 and falls rapidly as y \uparrow

- (b), $\lambda = 2$: a skew distribution with longer tail on the right
- (c), $\lambda = 5$: distribution become more normally shaped

Flying-Bomb Hits on London During World War II [Clarke, 1946; Feller, 1950]

The City of London was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly *k* times was counted. There were a total of 537 hits, so the average number of hits per area was $\frac{537}{576} = 0.9323$. The observed frequencies in the table below are remarkably close to a Poisson distribution with rate $\lambda = 0.9323$

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected	226.7	211.4	98.5	30.6	7.1	1.6

US Landfalling Hurricanes

Poisson Regression

Source: https://www.kaggle.com/gi0vanni/ analysis-on-us-hurricane-landfalls

Number of US Landfalling Hurricanes Per Hurricane Season

Research question: Can the variation of the annual counts be explained by some environmental variable, e.g., Southern Oscillation Index (SOI)?

Some Potentially Relevant Predictors

- Southern Oscillation Index (SOI): an indicator of wind shear
- Sea Surface Temperature (SST): an indicator of oceanic heat content
- North Atlantic Oscillation (NAO): an indicator of steering flow
- Sunspot Number (SSN): an indicator of upper air temperature

Hurricane Count vs. Environmental Variables

$$\log(\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
$$\Rightarrow Y \sim \operatorname{Pois}(\lambda = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}))$$

- Model the logarithm of the mean response as a linear combination of the predictors
- Parameter estimation is carry out using maximum likelihood method
- Interpretation of $\beta's$: every one unit increase in x_j , given that the other predictors are held constant, the λ increases by a factor of $\exp(\beta_j)$

Poisson Regression Model:

 $\log(\lambda_{\text{Count}}) \sim \text{SOI} + \text{NAO} + \text{SST} + \text{SSN}$

Table: Coefficients of the Poisson regression model.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.5953	0.1033	5.76	0.0000
SOI	0.0619	0.0213	2.90	0.0037
NAO	-0.1666	0.0644	-2.59	0.0097
SST	0.2290	0.2553	0.90	0.3698
SSN	-0.0023	0.0014	-1.68	0.0928

 \Rightarrow every one unit increase in SOI, the hurricane rate increases by a factor of $\exp(0.0619)=1.0639$ or 6.39%.

Issue with Linear Regression Fit

Linear Regression Model:

 $E(Count) \sim SOI + NAO + SST + SSN$

Table: Coefficients of the linear regression model.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.8869	0.1876	10.06	0.0000
SOI	0.1139	0.0402	2.83	0.0053
NAO	-0.2929	0.1173	-2.50	0.0137
SST	0.4314	0.4930	0.88	0.3830
SSN	-0.0039	0.0024	-1.66	0.1000

If we use this fitted model to predict the mean hurricane count, say SOI = -3, NAO=3, SST = 0, SSN=250

This number does not make sense

Model Selection

<pre>> step(PoiFull)</pre>		
Start: AIC=479.64		
All ~ SOI + NAO + SST	+ SSN	
Df Deviance	AIC	
- SST 1 175.61 478	.44	
<none> 174.81 479</none>	.64	
- SSN 1 177.75 480	.59	
- NAO 1 181.58 484	.41	
- SOI 1 183.19 486	.02	
Step: AIC=478.44		
All ~ SOI + NAO + SSN		
Df Deviance	AIC	
<none> 175.61 478</none>	.44	
- SSN 1 178.29 479	.12	
- NAO 1 183.57 484	.41	
- SOI 1 183.91 484	.74	
Call: glm(formula = A	ll ~ SOI + NAO + SSN,	<pre>family = "poisson", data = df)</pre>
Coefficients:		
(Intercept) S	OI NAO	SSN
0.584957 0.0615	33 -0.177439 -0	.002201
Degrees of Freedom: 14	4 Total (i.e. Null);	141 Residual
Null Deviance: 19	7.9	
Residual Deviance: 175	.6 AIC: 478.4	

