Lecture 1

Introduction
STAT 8020 Statistical Methods II

Who is the instructor?

Who is the instructor?
Mlace Dolinian 1

Schedule

Tell us about yourself
Simple limear
Regression
SLR Parameter
Estimation
Residual Analysis

Who am I?

- Second year Assistant Professor of Applied Statistics and Data Science
- Born in Laramie, Wyoming, grew up in Taiwan

- With a B.S. in Mechanical Engineering, switched to Statistics in graduate school
- Got a Ph.D. (Statistics) in 2017 at Purdue University.

How to reach me?

- Email: wkhuang@clemson.edu
- Office: O-221 Martin Hall
- Office Hours: TR 11:00am - 12:00pm and by appointment

Class Policies / Schedule

Who is the instructor?
Class Policies /
Schedule
Tell us about yourself
Simple Linear
Regression
SLR Parameter
Estimation
Residual Analysis

Logistics

- We will meet TR 12:30pm - 1:45pm via Zoom
- There will be three online exams and a (comprehensive) online final. The (tentative) dates for the three exams are:
- Exam I: Sept. 24, Thursday
- Exam II: Oct. 20, Tuesday
- Exam II: Nov. 12, Tuesday
- The Final Exam will be given on Wednesday, Dec. 7, 3:00 pm -5:30 pm.
- No classes on Nov. 3 (Fall Break) \& 26 (Thanksgiving)

Class Website

CANVAS and my teaching website (link: https://whitneyhuang83.github.io/STAT8020/ Fall2020/stat8020_2020Fall.html)

- Course syllabus [Link] / Announcements
- Lecture slides/notes
- Exam schedule
- Data sets
- R code

Recommended Textbook

An Introduction to Statistical Methods and Data Analysis, $6^{\text {th }}$ Edition. Lyman Ott and Micheal T. Longnecker, Duxbury, 2010; ISBN-13: 978-1305269477

Evaluation

- Grade Distribution: | Exam I: | 25% |
| :--- | :--- |
| Exam II | 25% |
| Exam III | 25% |
| Final Exam | 25% |
- Letter Grade:

$>=90.00$	A
$88.00 \sim 89.99$	A-
$85.00 \sim 87.99$	B+
$80.00 \sim 84.99$	B
$78.00 \sim 79.99$	B-
$75.00 \sim 77.99$	C+
$70.00 \sim 74.99$	C
$68.00 \sim 69.99$	C-
$<=67.99$	F

Tentative Topics and Dates

Part I: Regression Analysis (August 20 - September 24)

- Review of Simple Linear Regression
- Multiple Linear Regression: Statistical Inference; Model Selection and Diagnostics
- Regression Models with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression

Part II: Categorical Data Analysis (September 29 - October 20)

- Review of Inference for Proportions and Contingency Tables
- Relative Risk and Odds Ratio
- Logistic Regression and Poisson Regression

Tentative Topics and Dates cont'd

Part III: Experimental Design (October 22 - November 12)

- Introduction to Experimental Design: Principles and Techniques
- Completely randomized Designs, Block Designs, Latin Square Designs, Nested and Split-Plot Designs
- Computer experiments

Part IV: Multivariate, Spatial and Time Series Analysis
(November 17 - December 3)

- Discriminate Analysis, Principle Components Analysis, and Cluster Analysis
- Basic of time series and spatial data analysis

Computing

We will use software to perform statistical analyses. The recommended software for this course are JASP and R/Rstudio

- JASP
- a free/open-source graphical program for statistical analysis
- available at https://jasp-stats.org/
- R/ R Studio
- a free/open-source programming language for statistical analysis
- available at https://www.r-project.org/(R); https://rstudio.com/(Rstudio)

You are welcome to use a different package (e.g. SAS, JMP, SPSS, Minitab) if you prefer

Tell us about yourself

Who is the instructor?
Clace Poliniae /
Schedule
Tell us about yourself
Simple Linear
Regression
SLR Parameter
Estimation
Residual Analysis

Tell us about yourself

Tell us about yourself

- Your name
- Degree program
- Your background in Statistics/Computing

Review of Simple Linear Regression

UN I VERS I TY Y
Who is the instructor?
Clace Doliaine 1
Schedule
Tell us about yourself
Simple Linear
Regression
SLR Parameter
Estimation
Residual Analysis

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

We will focus on simple linear regression in the next few lectures

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the direction and strength of this linear relationship?
> cov(age, maxHeartRate)
[1] -243.9524

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the direction and strength of this linear relationship?
> cov(age, maxHeartRate)
> cor(age, maxHeartRate)
[1] -243.9524
[1] -0.9534656

Simple Linear Regression (SLR)

Y : dependent (response) variable; X : independent (predictor) variable

- In SLR we assume there is a linear relationship between X and Y :

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

- We need to estimate β_{0} (intercept) and β_{1} (slope)
- We can use the estimated regression equation to
- make predictions
- study the relationship between response and predictor
- control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

Regression equation: $Y=\beta_{0}+\beta_{1} X$

- $\beta_{0}: \mathrm{E}[Y]$ when $X=0$
- $\beta_{1}: \mathrm{E}[\Delta Y]$ when X increases by 1

Assumptions about the Random Error ε

In order to estimate β_{0} and β_{1}, we make the following assumptions about ε

- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Therefore, we have

$$
\begin{aligned}
& \mathrm{E}\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i}, \text { and } \\
& \operatorname{Var}\left[Y_{i}\right]=\sigma^{2}
\end{aligned}
$$

The regression line $\beta_{0}+\beta_{1} X$ represents the conditional mean curve whereas σ^{2} measures the magnitude of the variation around the regression curve

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta_{1}} \bar{X}
\end{gathered}
$$

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta_{1}} \bar{X}
\end{gathered}
$$

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{gathered}
$$

We also need to estimate σ^{2}

Estimation: Method of Least Square

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose β_{0} and β_{1} to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{gathered}
$$

We also need to estimate σ^{2}

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2} \text {, where } \hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
- Are unbiased, i.e.,
- $\mathrm{E}\left[\hat{\beta}_{1}\right]=\beta_{1} ; \mathrm{E}\left[\hat{\beta}_{0}\right]=\beta_{0}$
- $\mathrm{E}\left[\hat{\sigma}^{2}\right]=\sigma^{2}$
(2) Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_{i}

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$$
\text { MaxHeartRate }=220-\text { Age } .
$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset":
whitneyhuang83.github.io/STAT8010/Data/ maxHeartRate.csv)

- Compute the estimates for the regression coefficients
(2) Compute the fitted values
(Compute the estimate for σ

Estimate the Parameters β_{1}, β_{0}, and σ^{2}

Y_{i} and X_{i} are the Maximum Heart Rate and Age of the $\mathrm{i}^{\text {th }}$ individual

- To obtain $\hat{\beta}_{1}$
(1) Compute $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}, \bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$
(2) Compute $Y_{i}-\bar{Y}, X_{i}-\bar{X}$, and $\left(X_{i}-\bar{X}\right)^{2}$ for each observation
(3) Compute $\sum_{i}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$ divived by $\sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- $\hat{\beta}_{0}$: Compute $\bar{Y}-\hat{\beta}_{1} \bar{X}$
- $\hat{\sigma}^{2}$
(1) Compute the fitted values: $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}, \quad i=1, \cdots, n$
(2) Compute the residuals $e_{i}=Y_{i}-\hat{Y}_{i}, \quad i=1, \cdots, n$
(0) Compute the residual sum of squares (RSS) $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ and divided by $n-2$ (why?)

Let's Do the Calculations

$$
\begin{aligned}
& \bar{X}=\sum_{i=1}^{15} \frac{18+23+\cdots+39+37}{15}=37.33 \\
& \bar{Y}
\end{aligned}=\sum_{i=1}^{15} \frac{202+186+\cdots+183+178}{15}=180.27
$$

X	18	23	25	35	65	54	34	56	72	19	23	42	18	39
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78
	195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94

- $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=-0.7977$
- $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=210.0485$
- $\hat{\sigma}^{2}=\frac{\sum_{i=1}^{15}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{13}=20.9563 \Rightarrow \hat{\sigma}=4.5778$

Let's Double Check

Output from \mathbb{R} (\mathbb{R} studio)

Class Policies /

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Residuals

- The residuals are the differences between the observed and fitted values:

$$
e_{i}=Y_{i}-\hat{Y}_{i},
$$

where $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$

- e_{i} is NOT the error term $\varepsilon_{i}=Y_{i}-\mathrm{E}\left[Y_{i}\right]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_{i}. Recall
- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Who is the instructor?

Clace Daliniae /
Schedule
Tell us about yourself
Simnle Limear
Regression
SLR Parameter
Estimation
Residual Analysis

Interpreting Residual Plots

Mhece Dalinian
Schedule
Tell us about yourself
Simple limeor
Regression
SLR Parameter
Estimation
Residual Analysis

Interpreting Residual Plots

Who is the instructor?
Class Policies
Schedule
Tell us about yourself

Regression
SLR Parameter

Residual Analysis

Figure: Figure courtesy of Faraway’s Linear Models with R (2005, p. 59).

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions

Next time we will talk about

- More on residual analysis

C2 Normal Error Regression Model and statistical inference for β_{0}, β_{1}, and σ^{2}
(Prediction

