Lecture 1

Introduction

STAT 8020 Statistical Methods II August 20, 2020

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Residual Analysis

Whitney Huang Clemson University

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Residual Analysis

Who is the instructor?

Who am I?

- Second year Assistant Professor of Applied Statistics and Data Science
- Born in Laramie, Wyoming, grew up in Taiwan

 With a B.S. in Mechanical Engineering, switched to Statistics in graduate school

• Got a Ph.D. (Statistics) in 2017 at Purdue University.

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

- Email: wkhuang@clemson.edu
- Office: O-221 Martin Hall
- Office Hours: TR 11:00am 12:00pm and by appointment

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Residual Analysis

Class Policies / Schedule

Logistics

- We will meet TR 12:30pm 1:45pm via Zoom
- There will be three online exams and a (comprehensive) online final. The (tentative) dates for the three exams are:
 - Exam I: Sept. 24, Thursday
 - Exam II: Oct. 20, Tuesday
 - Exam II: Nov. 12, Tuesday
 - The Final Exam will be given on Wednesday, Dec. 7, 3:00 pm -5:30 pm.
- No classes on Nov. 3 (Fall Break) & 26 (Thanksgiving)

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Class Website

CANVAS and my teaching website (link: https://whitneyhuang83.github.io/STAT8020/ Fall2020/stat8020_2020Fall.html)

- Course syllabus [Link] / Announcements
- Lecture slides/notes
- Exam schedule
- Data sets
- R code

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Recommended Textbook

An Introduction to Statistical Methods and Data Analysis, 6th Edition. Lyman Ott and Micheal T. Longnecker, Duxbury, 2010; ISBN-13: 978-1305269477

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Evaluation

• Grade Distribution:

Exam I:	25%
Exam II	25%
Exam III	25%
Final Exam	25%
	•

• Letter Grade:

>= 90.00	Α
$88.00 \sim 89.99$	A-
$85.00 \sim 87.99$	B+
$80.00 \sim 84.99$	В
$78.00 \sim 79.99$	B-
$75.00 \sim 77.99$	C+
$70.00 \sim 74.99$	С
$68.00\sim 69.99$	C-
<= 67.99	F

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Tentative Topics and Dates

Part I: Regression Analysis (August 20 - September 24)

- Review of Simple Linear Regression
- Multiple Linear Regression: Statistical Inference; Model Selection and Diagnostics
- Regression Models with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression

Part II: Categorical Data Analysis (September 29 – October 20)

- Review of Inference for Proportions and Contingency Tables
- Relative Risk and Odds Ratio
- Logistic Regression and Poisson Regression

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Tentative Topics and Dates cont'd

Part III: Experimental Design (October 22 – November 12)

- Introduction to Experimental Design: Principles and Techniques
- Completely randomized Designs, Block Designs, Latin Square Designs, Nested and Split-Plot Designs
- Computer experiments

Part IV: Multivariate, Spatial and Time Series Analysis (November 17 – December 3)

- Discriminate Analysis, Principle Components Analysis, and Cluster Analysis
- Basic of time series and spatial data analysis

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Computing

We will use software to perform statistical analyses. The recommended software for this course are $\tt JASP$ and $\tt R/Rstudio$

- JASP
 - a free/open-source graphical program for statistical analysis
 - available at https://jasp-stats.org/

- a free/open-source programming language for statistical analysis
- available at https://www.r-project.org/ (R); https://rstudio.com/ (Rstudio)

You are welcome to use a different package (e.g. SAS, JMP, SPSS, Minitab) if you prefer

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Residual Analysis

Tell us about yourself

Tell us about yourself

- Degree program
- Your background in Statistics/Computing

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Residual Analysis

Review of Simple Linear Regression

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Residual Analysis

We will focus on simple linear regression in the next few lectures

Scatterplot: Is Linear Trend Reasonable?

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Residual Analysis

The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

> cov(age, maxHeartRate)
[1] -243.9524

Scatterplot: Is Linear Trend Reasonable?

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Residual Analysis

The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

> cov(age, maxHeartRate)
[1] -243.9524

> cor(age, maxHeartRate)
[1] -0.9534656

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we **assume** there is a **linear relationship** between *X* and *Y*:

 $Y = \beta_0 + \beta_1 X + \varepsilon$

- We need to estimate β_0 (intercept) and β_1 (slope)
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

Regression equation: $Y = \beta_0 + \beta_1 X$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

- β_0 : E[Y] when X = 0
- β_1 : E[ΔY] when X increases by 1

Assumptions about the Random Error ε

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

•
$$\mathbf{E}[\varepsilon_i] = 0$$

• Var
$$[\varepsilon_i] = \sigma^2$$

•
$$\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$$

Therefore, we have

$$\mathrm{E}[Y_i] = eta_0 + eta_1 X_i, \ \mathrm{and} \ \mathrm{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0 + \beta_1 X$ represents the **conditional mean curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linear Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = rac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $E[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv)

- Ocompute the estimates for the regression coefficients
- Ompute the fitted values
- **(**) Compute the estimate for σ

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Estimate the Parameters β_1 , β_0 , and σ^2

 Y_i and X_i are the Maximum Heart Rate and Age of the ith individual

• To obtain $\hat{\beta}_1$

(

Occepte
$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}, \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

② Compute $Y_i - \overline{Y}$, $X_i - \overline{X}$, and $(X_i - \overline{X})^2$ for each observation

- Ompute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- *²*
- Compute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, $i = 1, \cdots, n$
- **2** Compute the **residuals** $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
- Compute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$ and divided by n - 2 (why?)

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$
$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

X	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
_	195.69	191.70	190.11	182.13	158.20	166.97	182.93	165.38	152.61	194.89	191.70	176.54	195.69	178.94	180.53

•
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

•
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

Let's Double Check

Output from ([®] Studio)

> fit <- lm(MaxHeartRate ~ Age) > summary(fit)
Call: lm(formula = MaxHeartRate ~ Age)
Residuals: Min 1Q Median 3Q Max
-8.9258 -2.5383 0.3879 3.1867 6.6242
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
Age -0.79773 0.06996 -11.40 3.85e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021 F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08

SLR Parameter

Linear Regression Fit

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter

Residual Analysis

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Residuals

• The residuals are the differences between the observed and fitted values:

$$e_i=Y_i-\hat{Y}_i,$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

- e_i is NOT the error term $\varepsilon_i = Y_i E[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i. Recall
 - $\mathbf{E}[\varepsilon_i] = 0$
 - Var $[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Interpreting Residual Plots

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions Next time we will talk about
 - More on residual analysis
 - Ormal Error Regression Model and statistical inference for β₀, β₁, and σ²

Who is the instructor?

Class Policies / Schedule

Tell us about yourself

Simple Linea Regression

SLR Parameter Estimation