

# Lecture 20 Poisson Regression II

STAT 8020 Statistical Methods II October 29, 2020

> Whitney Huang Clemson University

## Species Diversity on the Galapagos Islands Revisited

Recall we are interested in studying the relationship between the **number** of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.





## Data: Species Diversity on the Galapagos Islands

|              | ,       |         |           |         |       |          |
|--------------|---------|---------|-----------|---------|-------|----------|
|              | Species | Area    | Elevation | Nearest | Scruz | Adjacent |
| Baltra       | 58      | 25.09   | 346       | 0.6     | 0.6   | 1.84     |
| Bartolome    | 31      | 1.24    | 109       | 0.6     | 26.3  | 572.33   |
| Caldwell     | 3       | 0.21    | 114       | 2.8     | 58.7  | 0.78     |
| Champion     | 25      | 0.10    | 46        | 1.9     | 47.4  | 0.18     |
| Coamano      | 2       | 0.05    | 77        | 1.9     | 1.9   | 903.82   |
| Daphne.Major | 18      | 0.34    | 119       | 8.0     | 8.0   | 1.84     |
| Daphne.Minor | 24      | 0.08    | 93        | 6.0     | 12.0  | 0.34     |
| Darwin       | 10      | 2.33    | 168       | 34.1    | 290.2 | 2.85     |
| Eden         | 8       | 0.03    | 71        | 0.4     | 0.4   | 17.95    |
| Enderby      | 2       | 0.18    | 112       | 2.6     | 50.2  | 0.10     |
| Espanola     | 97      | 58.27   | 198       | 1.1     | 88.3  | 0.57     |
| Fernandina   | 93      | 634.49  | 1494      | 4.3     | 95.3  | 4669.32  |
| Gardner1     | 58      | 0.57    | 49        | 1.1     | 93.1  | 58.27    |
| Gardner2     | 5       | 0.78    | 227       | 4.6     | 62.2  | 0.21     |
| Genovesa     | 40      | 17.35   | 76        | 47.4    | 92.2  | 129.49   |
| Isabela      | 347     | 4669.32 | 1707      | 0.7     | 28.1  | 634.49   |
| Marchena     | 51      | 129.49  | 343       | 29.1    | 85.9  | 59.56    |
| Onslow       | 2       | 0.01    | 25        | 3.3     | 45.9  | 0.10     |
| Pinta        | 104     | 59.56   | 777       | 29.1    | 119.6 | 129.49   |
| Pinzon       | 108     | 17.95   | 458       | 10.7    | 10.7  | 0.03     |
| Las.Plazas   | 12      | 0.23    | 94        | 0.5     | 0.6   | 25.09    |
| Rabida       | 70      | 4.89    | 367       | 4.4     | 24.4  | 572.33   |
| SanCristobal | 280     | 551.62  | 716       | 45.2    | 66.6  | 0.57     |
| SanSalvador  | 237     | 572.33  | 906       | 0.2     | 19.8  | 4.89     |
| SantaCruz    | 444     | 903.82  | 864       | 0.6     | 0.0   | 0.52     |
| SantaFe      | 62      | 24.08   | 259       | 16.5    | 16.5  | 0.52     |
| SantaMaria   | 285     | 170.92  | 640       | 2.6     | 49.2  | 0.10     |
| Seymour      | 44      | 1.84    | 147       | 0.6     | 9.6   | 25.09    |
| Tortuga      | 16      | 1.24    | 186       | 6.8     | 50.9  | 17.95    |
| Wolf         | 21      | 2.85    | 253       | 34.1    | 254.7 | 2.33     |
|              |         |         |           |         |       |          |



## **Poisson Regression Fit**

```
Call:
glm(formula = Species ~ ., family = poisson, data = gala)
```

Deviance Residuals: Min 1Q Median 3Q Max -8.2752 -4.4966 -0.9443 1.9168 10.1849

Coefficients:

|              | Estimate    | Std. Error | z value   | Pr(>lzl) |        |
|--------------|-------------|------------|-----------|----------|--------|
| (Intercept)  | 3.155e+00   | 5.175e-02  | 60.963    | < 2e-16  | ***    |
| Area         | -5.799e-04  | 2.627e-05  | -22.074   | < 2e-16  | ***    |
| Elevation    | 3.541e-03   | 8.741e-05  | 40.507    | < 2e-16  | ***    |
| Nearest      | 8.826e-03   | 1.821e-03  | 4.846     | 1.26e-06 | ***    |
| Scruz        | -5.709e-03  | 6.256e-04  | -9.126    | < 2e-16  | ***    |
| Adjacent     | -6.630e-04  | 2.933e-05  | -22.608   | < 2e-16  | ***    |
|              |             |            |           |          |        |
| Signif. code | es: 0 '***' | 0.001 '**  | ' 0.01 '' | *'0.05'. | ' 0.1' |

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3510.73 on 29 degrees of freedom Residual deviance: 716.85 on 24 degrees of freedom AIC: 889.68

Number of Fisher Scoring iterations: 5



1

**Poisson Regression** 

## Wafer Quality and Possible Sampling Schemes

The data shown in the table below were collected as part of a quality improvement study at a semiconductor factory. A sample of wafers was drawn and cross-classified according to whether a particle was found on the die that produced the wafer and whether the wafer was good or bad.

| Quality | No Particles | Particles | Total |
|---------|--------------|-----------|-------|
| Good    | 320          | 14        | 334   |
| Bad     | 80           | 36        | 116   |
| Total   | 400          | 50        | 450   |

**Source:** Hall, S. (1994). Analysis of defectivity of semiconductor wafers by contigency

How the data were collected?



#### **Possible Sampling Schemes**

- We observed the manufacturing process for a certain period of time and observed 450 wafers ⇒ Poisson Model
- We decided to sample 450 wafers. The data were then cross-classified ⇒ Multinomial Model
- We selected 400 wafers without particles and 50 wafers with particles and then recorded the good or bad outcome ⇒ Binomial Model
- We selected 400 wafers without particles and 50 wafers with particles that also included, by design, 334 good wafers and 116 bad ones ⇒ Hypergeometric Model



#### **Poisson Model: Log-linear Regression**

```
Y_{ij} \sim \text{Poi}(\lambda_{ij}), \quad \log \lambda_{ij} = \gamma + \alpha_i + \beta_j, \quad i, j = 1, 2.
```

```
> mod1 <- glm(Freg ~ Quality + Particle, family = "poisson")</pre>
> sumary(mod1)
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.69336 0.05720 99.5350 < 2.2e-16
QualityBad -1.05755 0.10777 -9.8129 < 2.2e-16
ParticleYes -2.07944 0.15000 -13.8630 < 2.2e-16
n = 4 p = 3
Deviance = 54.03045 Null Deviance = 474.09877 (Difference = 420.06832)
> drop1(mod1, test = "Chi")
Single term deletions
Model:
Freq ~ Quality + Particle
        Df Deviance AIC LRT Pr(>Chi)
        54.03 83.77
<none>
Ouality 1 164.22 191.96 110.19 < 2.2e-16 ***
Particle 1 363.91 391.66 309.88 < 2.2e-16 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



## **Multinomial Model**



 $Y_{ij} \sim \text{Multi}(n, p_{11}, p_{12}, p_{21}, p_{22})$ 

```
Want to test H_0: p_{ij} = p_i p_j vs. H_a: p_{ij} \neq p_i p_j, \quad i, j = 1, 2.
> n = 450
> (pp <- prop.table(xtabs(Freq ~ Particle)))</pre>
Particle
       No
                Yes
0.8888889 0.1111111
> (qp <- prop.table(xtabs(Freq ~ Quality)))</pre>
Ouality
                Bad
     Good
0.7422222 0.2577778
> (exp <- outer(ap, pp) * n)
       Particle
Ouality No Yes
   Good 296,8889 37,11111
   Bad 103.1111 12.88889
> (obs <- xtabs(Freq ~ Quality + Particle))</pre>
       Particle
Ouality No Yes
   Good 320 14
   Bad 80 36
> (2 * sum(obs * log(obs / exp)))
[1] 54.03045
```

#### **Binomial Model**



```
Y_{11} \sim \operatorname{Bin}(n_1 = 400, p_{11})
Y_{21} \sim \operatorname{Bin}(n_2 = 50, p_{21})
```

```
Want to test H_0: p_{11} = p_{21} vs. H_a: p_{11} \neq p_{21}
> (m <- matrix(Freq, nrow = 2))</pre>
     Γ.17 Γ.27
[1,] 320 80
[2,] 14 36
> (binFit <- qlm(m \sim 1, family = binomial))
Call: qlm(formula = m \sim 1, family = binomial)
Coefficients:
(Intercept)
      1.058
Degrees of Freedom: 1 Total (i.e. Null); 1 Residual
Null Deviance:
                    54.03
Residual Deviance: 54.03 ATC: 66.19
> predict(binFit, type = "response")
                  2
0.7422222 0.7422222
```

#### Hypergeometric Model: Fisher's Exact Test



 $Y_{11} \sim \text{Hyper}(N = 450, 400, 334)$ 

> fisher.test(obs)

```
Fisher's Exact Test for Count Data
```

```
data: obs
p-value = 2.955e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    5.090628 21.544071
sample estimates:
    odds ratio
    10 21221
```

```
10.21331
```

## **Generalized Linear Model**

• Gaussian Linear Model:

 $Y \sim N(\mu, \sigma^2), \quad \mu = \boldsymbol{X}^T \boldsymbol{\beta}$ 

#### • Bernoulli Linear Model:

$$Y \sim \text{Bernoulli}(\pi), \quad \log(\frac{\pi}{1-\pi}) = \boldsymbol{X}^T \boldsymbol{\beta}$$

#### • Poisson Linear Regression:

 $Y \sim \text{Poisson}(\lambda), \quad \log \lambda = \boldsymbol{X}^T \boldsymbol{\beta}$ 

