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A completely randomized design (CRD) has
@ g different treatments

@ g known treatment group sizes nq,ng, - - - ,ng With
Yini=N

@ Completely random assignment of treatments to the
experimental units

This is the basic experimental design; everything else is a
modification
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A completely randomized design (CRD) has
@ g different treatments

@ g known treatment group sizes nq,ng, - - - ,ng With
g L
>l ini=N

@ Completely random assignment of treatments to the
experimental units

This is the basic experimental design; everything else is a
modification

o Easiest to analyze
@ Most resilient when things go wrong

o Often sufficient
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@ Any evidence means (i.e., {u1, po, - - - , 1g}) are not all the
same? = ANOVA

@ Which ones differ? = Multiple comparisons

@ Estimates/confidence intervals of means and differences



Statistical Model: Means Model e

Let Y;; be the random variable that represents the response for CLEMSS‘-;I"-N
the ;1 experimental unit to treatment i. Let 11; = E(Y;;) be the s
mean response for the i" treatment. We have
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YVij=p+aite;, i=1-,9, j=1,-,n; e;~N(®00?)
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Overparameterized. Need to add a constraint so that the
parameters are estimable.




Effects Model Cont’d

Suppose we let >°7 | n;o; =0
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Effects Model Cont'd

Suppose we let a; =0
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yi; is the “observed” response for the ;™ experimental unit to
treatment <.

Treatment Observations Totals Averages
1 Yyin Y2 o Yimg Y1 (8
2 Y21 Y22 Yo, Y. Y.
g Yg1  Yg2 - Ygn, Yg- Yg-



ANOVA

Decomposition of y;;: yi; = §.. + (Fi. — §..) + (yij

= ZZ (Yij — ¥-

i=1 j=1

Response

SSr

SSTRT

)? = > i (i - 3?--)2+ZZ
i=1 i
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ANOVA Table Rand‘(:)ror:i[;’()eljtgleysigns

Source  df SS MS EMS
Treatment g — 1 SSyrr MSprr = SSQ%T o2+ Zg%’f‘f
Error N—-gSSr MSg= % o2
Total N —1 SSy
g ni ) g n y2
SST:ZZ(yijfﬂ..) :Z y?jfﬁ
i=1j=1 i=1 j=1
- 2 N~YL Y
SSTRT:Zni (0. —7.)" = . é_ﬁ

i=1
g n;

i g: g 9
SSE:ZZ(Z/M—%)QZZ y?j—Z%ZSST—SSTRT
=17 i=1 "

=1 j=1 i=1 j=1
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Testing for treatment effects

Hy:0,=0 forall:
H,:«a;#0 forsome:i

Test statistics: I = "",agﬂT Under H,, the test statistic follows
an F-distribution with ¢ — 1 and N — g degrees of freedom
Reject H if

Fops > Fq—l,N—_{];a

for an a-level test, F;,_1 n_g; is the 100 x (1 — a)% percentile
of a central F-distribution with ¢ — 1 and N — g degrees of
freedom.

The P-value of the F-test is the probability of obtaining F' at
least as extreme as F,s, thatis, P(F > F,;s) = reject Hy if
P-value < a.

22.11
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An experiment was conducted to determine if experience has CLEMS®&N
an effect on the time it takes for mice to run a maze. Four E——
treatment groups, consisting of mice having been trained on
the maze one, two, three and four times were run through the
maze and their times recorded.

Egﬁiﬁ@

Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

Trainingruns | 1 | 2 | 3 | 4
n; 5 5 5 5
Y. 9.14 7.24 6.76 5.18

s? 0.308 | 0.418 | 0.313 | 0.262
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Trainingruns | 1 | 2 | 3 | 4

n; 5 5 5 5

Ui 9.14 7.24 6.76 5.18

52 0.308 | 0.418 | 0.313 | 0.262

@ Write down the model.

o Fill out the ANOVA table and test whether the time to run
the maze is affected by training. Use a significant level of
.05.

2214



Model Assumptions

Model:

Yij=pt+oa; +e;, i=1--,9, j=1,-

We make the following assumptions:

@ Errors normally distributed
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Model Assumptions

Model:

Yij=pt+oa; +e;, i=1--,9, j=1,-

We make the following assumptions:

@ Errors normally distributed
@ Errors have constant variance

@ Errors are independent

i.9.d

= €ij ~ N(O,OQ)

s Ny
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All models are wrong

but some are useful

George E.P. Box
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If the assumptions are not true, our statistical inferences might
not be valid, for example,

@ A confidence interval might not cover with the stated
coverage rate

@ A test with nominal type | error could actually have a larger
or smaller type | error rate

2217
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If the assumptions are not true, our statistical inferences might
not be valid, for example,

@ A confidence interval might not cover with the stated
coverage rate

@ A test with nominal type | error could actually have a larger
or smaller type | error rate

We need good strategy for checking model assumptions,
- i.i.d. 2
I.e., € ~ 1\I(O7 (o )

2217
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We need to check if these assumptions reasonably met M
Model:
Yij = B+ Q; + €

Data:

Yij = @+ W -v)) + (¥—9)

Yij = Uij + & (ry)

observed = predicted + residual

Residuals are our “estimates” of unobservable errors €’ .s
J

We will conduct model diagnostics using residual and
predicted values.

22.18
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o
We will use residuals to assess the model assumptions. M\I

@ Raw residual:

Tij = Yij — Yij, Where §i; = i+ & = ¥,

2219
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We will use residuals to assess the model assumptions. M

@ Raw residual:
Tij = Yij — Yij, Where §i; = i+ & = ¥,

@ Standardized residual (internally Studentized residual)
adjusts r;; for its estimated standard deviation

7”1']'

MSg(1 — nii)

sij =
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We will use residuals to assess the model assumptions. M\]

@ Raw residual:
Tij = Yij — Yij, Where §i; = i+ & = ¥,

@ Standardized residual (internally Studentized residual)
adjusts r;; for its estimated standard deviation

7”1']'

MSg(1 — nii)

sij =

o Studentized residual (externally Studentized residual)

tij ~ tar=N—g—1 if the model is correct = can be used to
identify outliers

2219
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We DO NOT assume all y;;s come from the same normal I

distribution, instead we assume ¢;;s come from the same

normal distribution = Not informative to plot a histogram for all

the data—-treatment effects lead to non-normality

Example: Suppose g = 3, (i1, 2, u3) = (8,10, 15) and
€;;5 ~ N(0,2%)

Density
o
=
o
[,
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o If sample sizes are large, histograms of residuals can be
constructed from each treatment separately

000 005 010 015 020 025 0.3
000 005 010 015 020 025 030
000 005 010 015 020 025 O,

Residual Residual Residual

@ Also, if sample sizes are large, QQ-plots or normal
quantile plots can be generated for each treatment

2221
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k—3/8
n+1/4

Plots ;) versus ®~( ), k=1,---,n, where r, is the k"

; —1/k=3/8\ ia: .
ordered residual and ® (n+1/4) is its corresponding
(standard) normal score.

tor-3 N(0, 1) u(0,1)

Sample Quantiles
o
L on & 0o
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Sample Quantiles
\
Lo
L 1
Sample Quantiles
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Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles
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@ Assessing normality M

o Formal tests (e.g., Shapiro—Wilk test, Anderson—Darling
test) are usually not useful:

With small sample sizes, one will never be able to reject Ho,
with large sample sizes, one will constantly detect little
deviations that have no practical effect

o Assess normal assumption graphically using QQ-plots or
histograms

@ Dealing with Non-normality

o Use non-parametric procedure such as Kruskal-Wallis test
(1952)

o Transformation such as Box-Cox (1964)

@ F-test is robust to non-normality
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@ We can test for equal variance, but some tests rely heavily
on normality assumption:

o Hartley’s test
o Bartlett’s test
@ Cochran’s C test

o F-test is reasonably robust to unequal variance if ns are
equal, or nearly so

@ “If you have to to test for equality of variances, your best
bet is Levene’s test.” — Gary Oehlert

2224
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Q Compute Tij = Yij — Yi-

Q Treat the |r;;| as data and use the ANOVA F-test to test Hy
that the groups have the same average value of |r;;|

MS .
Q If FGEET > Fy_1 N—g-1;0 = reject Ho

© Modified Levene’s (Brown-Forsythe) test: use
di; = |yi; — Ui, the absolute deviations from the group
medians instead of |r;;|

Fairly robust to non-normality and unequal sample size

2225
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Use this residual versus predicted value (treatment) plot to
assess equal variance assumption and search for possible
outliers

22.26
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@ Checking constant variance assumption: Assess the
assumption qualitatively, don’t just rely no tests

@ Dealing with unequal variance

o Variance-stabilizing transformations

e Account unequal variance in the model

o F-test is reasonably robust to unequal variance if we have
(nearly) balanced designs
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Independence is often argued via randomization. However, M
plotting residuals versus run order or spatial location can give
information on lack of independence.

w
[N

N
o

Residual
=
Residual
1
N

10 15 20

Order Order

Durbin—Watson statistic is a simple numerical method for
checking serial dependence:

n—1 2
1\ —TL

ow = S = ree)
k=1"Tk

22.28



Example: Balloon Experiment (taken from Dean and Voss
Exercise 3.12)

The experimenter (Meily Lin) had observed that some colors of
birthday balloons seem to be harder to inflate than others. She ran

this experiment to determine whether balloons of different colors are
similar in terms of the time taken for inflation to a diameter of 7 inches.

Four colors were selected from a single manufacturer. An assistant

blew up the balloons and the experimenter recorded the times with a
stop watch. The data, in the order collected, are given in Table 3.13,

where the codes 1, 2, 3, 4 denote the colors pink, yellow, orange,
blue, respectively.

Table 3.13 Times (in seconds) for the balloon experiment

Time order 1 2 3 4 5 6 7 8
Coded color 1 3 1 4 3 2 2 2
Inflation time 220 24.6 20.3 19.8 243 222 28.5 25.7
Time order 9 10 11 12 13 14 15 16
Coded color 3 1 2 4 4 4 3 1
Inflation time 20.2 19.6 28.8 24.0 17.1 19.3 242 15.8
Time order 17 18 19 20 21 22 23 24
Coded color 2 1 4 3 1 4 4 2
Inflation time 18.3 17.5 18.7 229 16.3 14.0 16.6 18.1
Time order 25 26 27 28 29 30 31 32
Coded color 2 4 2 3 3 1 1 3
Inflation time 18.9 16.0 20.1 225 16.0 19.3 15.9 20.3
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