Lecture 23 Randomized Complete Block Designs \& Factorial Designs

STAT 8020 Statistical Methods II November 17, 2020

Review: Completely Randomized Design (CRD)

A CRD has

- g different treatments
- g known treatment group sizes $n_{1}, n_{2}, \cdots, n_{g}$ with $\sum_{j=1}^{g} n_{j}=N$ (i.e., N experimental units)
- Completely random assignment of treatments to units

A key assumption of CRD is that all experimental units are (approximately) homogeneous

Review: Completely Randomized Design (CRD)

A CRD has

- g different treatments
- g known treatment group sizes $n_{1}, n_{2}, \cdots, n_{g}$ with $\sum_{j=1}^{g} n_{j}=N$ (i.e., N experimental units)
- Completely random assignment of treatments to units

A key assumption of CRD is that all experimental units are (approximately) homogeneous

Question: What if this assumption is violated?

Randomized Complete Block Design (RCBD)

- The population of experimental units is divided into a number of relatively homogeneous sub-populations (blocks), and it is assumed that all experimental units within a given block are homogeneous
- Within each block, treatments are randomly assigned to experimental units such that each treatment occurs equally often (usually once) in each block
- A key assumption in the analysis is that the effect of each level of the treatment is the same for each level of the blocking factor.

RCBD Notation

- g is the number of treatments; r is the number of blocks
- $y_{i j}$ is the measurement on the unit in block i that received treatment j
- $N=r \times g$ is the total number of experimental units
- $\bar{y}_{. j}=\sum_{i=1}^{r} \frac{y_{i j}}{r}$ is the average of all measurements for units receiving treatment j
- $\bar{y}_{i .}=\sum_{j=1}^{g} \frac{y_{i j}}{g}$ is the average of all measurements for units in the $i_{t h}$ block
- $\bar{y}_{. .}=\sum_{i=1}^{r} \sum_{j=1}^{g} \frac{y_{i j}}{N}$ is the average of all measurements

RCBD Model and Assumptions

- The model for an RCBD is:

$$
Y_{i j}=\underbrace{\mu+\alpha_{j}}_{\mu_{j}}+\beta_{i}+\varepsilon_{i j}, \quad i=1, \cdots, r, \quad j=1, \cdots, g
$$

where μ is the overall mean, α_{j} is the effect of treatment j, β_{i} is the effect of block i, and $\varepsilon_{i j} \stackrel{i i d}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$ are random errors

- The effect of each level of the treatment is the same across blocks \Rightarrow no interaction between $\alpha^{\prime} s$ and $\beta^{\prime} s$

RCBD Sums of Squares

- Total sum of square:

$$
S S_{t o t}=\sum_{i=1}^{r} \sum_{j=1}^{g}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
$$

- Treatment sum of square:

$$
S S_{t r t}=\sum_{j=1}^{g} r\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2}
$$

- Block sum of square:

$$
S S_{b l k}=\sum_{i=1}^{r} g\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}
$$

- Error sum of square:

$$
S S_{e r r}=\sum_{i=1}^{r} \sum_{j=1}^{g}\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2}
$$

ANOVA Table and F Test

Source	df	SS MS	F statistic
Treatment $g-1$	$S S_{t r t} M S_{t r t}=\frac{S S_{t r t}}{g-1}$	$F_{t r t}=\frac{M S_{t r t}}{M S_{e r r}}$	
Block	$r-1$	$S S_{b l k} M S_{b l k}=\frac{S S_{b l k}}{r-1}$	$F_{b l k}=\frac{M S_{b l k}}{M S_{e r r}}$
Error	$(g-1)(r-1)$	$S S_{e r r} M S_{\text {err }}=\frac{S S_{e r r}}{(g-1)(r-1)}$	
Total	$N-1$	$S S_{t o t}$	

There are two hypothesis tests in an RCBD:

- $H_{0}: \alpha_{j}=0 \quad j=1, \cdots, g$
$H_{a}: \alpha_{j} \neq 0 \quad$ for some j
Test Statistic: $F_{t r t}=\frac{M S_{t r t}}{M S_{e r r}}$. Under H_{0},
$F_{t r t} \sim F_{d f_{1}=g-1, d f_{2}=(g-1)(r-1)}$
- H_{0} : The means of all blocks are equal H_{a} : At least one of the blocks has a different mean Test Statistic: $F_{b l k}=\frac{M S_{b k}}{M S_{e r r}}$. Under H_{0}, $F_{b l k} \sim F_{d f_{1}=r-1, d f_{2}=(g-1)(r-1)}$

Example

Suppose you are manufacturing concrete cylinders for bridge supports. There are three ways of drying concrete (say A, B, and C), and you want to find the one that gives you the best compressive strength. The concrete is mixed in batches that are large enough to produce exactly three cylinders, and your production engineer believes that there is substantial variation in the quality of the concrete from batch to batch.

You have data from $r=5$ batches on each of the $g=3$ drying processes. Your measurements are the compressive strength of the cylinder in a destructive test. (So there is an economic incentive to learn as much as you can from a well-designed experiment.)

Example: Data Set

The data are:

	Batch					
Treatment	1	2	3	4	5	Trt Sum
A	52	47	44	51	42	236
B	60	55	49	52	43	259
C	56	48	45	44	38	231
Batch Mean	168	150	138	147	123	726

The primary null hypothesis is that all three drying techniques are equivalent, in terms of compressive strength.

The secondary null is that the batches are equivalent (but if they are, then we have wasted power by controlling for an effect that is small or non-existent).

Example: ANOVA Table

Analysis of Variance Table

Response: x
Df Sum Sq Mean Sq F value
$\begin{array}{lllll}\text { trt } & 2 & 89.2 & 44.60 & 7.6239\end{array}$
$\begin{array}{lllll}\text { blk } & 4 & 363.6 & 90.90 & 15.5385\end{array}$
$\begin{array}{llll}\text { Residuals } 8 & 46.8 & 5.85\end{array}$
$\operatorname{Pr}(>F)$
trt
0.0140226 *
blk
0.0007684 ***

Interpretation?

What If We Ignore the Block Effect?

Suppose we had not blocked for batch. Then the data would be:

Treatment		Trt Sum
A	$52,47,44,51,42$	236
B	$60,55,49,52,43$	259
C	$56,48,45,44,38$	231

This is the same as before except now we ignore which batch the observation came from.

ANOVA Table for CRD

Analysis of Variance Table
Response: x

	Df	Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$			
trt	2	89.2	44.6	1.3041	0.3073
Residuals	12	410.4	34.2		

We fail to reject the null $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$ if we ignore the block effect
\Rightarrow Using blocks gave us a more powerful test!

Assessing the Additivity Assumption: Interaction Plot

"Parallel lines" \Rightarrow No interaction occurs

The Battery Design Experiment (Example 5.1, Montgomery, 6th Ed)

An engineer would like to study what effects do material type and temperature have on the life of the battery he designed. the engineer decides to test three plate materials at three temperature levels:

Material	Temperature $\left({ }^{\circ} \mathrm{F}\right)$						
Type	15		70			125	
1	130	155	34	40	20	70	
	74	180	80	75	82	58	
2	150	188	136	122	25	70	
2	159	126	106	115	58	45	
	138	110	174	120	96	104	
3	168	160	150	139	82	60	

This design is called a 3^{2} factorial design

Two-Factor Factorial Design

The effects model:

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k}
$$

$i=1, \cdots, a, j=1, \cdots, b, k=1, \cdots, n$

- a : the number of levels in the factor A
- b : the number of levels in the factor B
- $(\alpha \beta)_{i j}$: the interaction between α_{i} and β_{j}
- $\sum_{i=1}^{a} \alpha_{i}=\sum_{j=1}^{b} \beta_{j}=\sum_{i=1}^{a}(\alpha \beta)_{i j}=\sum_{j=1}^{b}(\alpha \beta)_{i j}=0$
- $a b n$ is the total number of the observations

ANOVA Table

Source	df	SS	MS	F
Factor A	$a-1$	SS_{A}	$\mathrm{MS}_{A}=\frac{\mathrm{SS}_{A}}{a-1}$	$F=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{E}}$
Factor B	$b-1$	SS_{B}	$\mathrm{MS}_{B}=\frac{\mathrm{SS}_{B}}{b-1}$	$F=\frac{\mathrm{MS}_{B}}{\mathrm{MS}}$
Interaction $(a-1)(b-1)$	$\mathrm{SS}_{A B}$	$\mathrm{MS}_{A B}=\frac{\mathrm{SS}_{A}}{(a-1)(b-1)}$	$F=\frac{\mathrm{MS}_{A B}}{\mathrm{MS}}$	
Error	$a b(n-1)$	SS_{E}	$\mathrm{MS}_{E}=\frac{\mathrm{SS}}{a b(n-1)}$	
Total	$a b n-1$	SS_{T}		

R Output

```
lm <- lm(y ~ temp * material, data = dat)
anova(lm)
```

Analysis of Variance Table

Response: y

$$
\text { Df Sum Sq Mean Sq F value } \quad \operatorname{Pr}(>F)
$$

temp $\quad 23911919559.428 .96771 .909 \mathrm{e}-07$
$\begin{array}{lllllll}\text { material } 2 & 10684 & 5341.9 & 7.9114 & 0.001976 \text { ** }\end{array}$
temp:material $4 \quad 9614 \quad 2403.43 .5595$ 0.018611 *
Residuals $27 \quad 18231 \quad 675.2$
Signif. codes: 0 ‘***' 0.001 '**’ 0.01 '*’ 0.05 '.’ 0.1 ' ' 1

Interaction Plot

