Lecture 24 Computer Experiments \& Principal Component Analysis

STAT 8020 Statistical Methods II November 19, 2020

Agenda

Computer Experiments
(1) Computer Experiments

Multinariate Analucic
(2) Multivariate Analysis
(3) Principal component analysis (PCA)

What is a Computer Experiment

In some situations it is economically, ethically, or simply not possible to run a physical experiment. Instead, the following scenario might be feasible:

- the physical process can be described by a mathematical model (e.g., a system of differential equations)
- computer code (simulator) can be written to compute the response from the mathematical model

In this case, a researcher can conduct a computer experiment by running the computer code, which serves as a proxy for the physical process, to compute a "response" at any combination of values of the inputs

Examples of Computer Models

Schematic for Global Atmospheric Model

Computer Experiments
Multivariate Analysis
Principal component analysis (PCA)

Computer Experiments vs. Physical Experiments

- "Experimental results are believed by everyone, except for the person who ran the experiment"
- "Computational results are believed by no one, except the person who wrote the code"

Computer Experiments vs. Physical Experiments

- "Experimental results are believed by everyone, except for the person who ran the experiment"
- "Computational results are believed by no one, except the person who wrote the code"

Replication, randomization and blocking are irreverent for a computer experiment because many computer codes are deterministic and all the inputs to the code are known and can be controlled

Design \& Analysis of Computer Experiments

- Design:
where to make the runs, i.e., the selection of inputs $\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n}$ where $\boldsymbol{x}_{i}=\left(x_{1, i}, x_{2, i}, \cdots x_{d, i}\right)$
- Analysis:
fit a statistical model using the model inputs-output $\left\{y_{i}, \boldsymbol{x}_{i}\right\}_{i=1}^{n}$ to "emulate" the simulator and to quantify the prediction uncertainty for $y\left(x_{\text {new }}\right)$, usually via a Gaussian Process Model GP $(m(\cdot), K(\cdot, \cdot))$, where
- $m(\boldsymbol{x})=\mathrm{E}[y(x)]$ is the mean function
- $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\operatorname{Cov}\left(y(\boldsymbol{x}), y\left(\boldsymbol{x}^{\prime}\right)\right)$ is the covariance function

An Overview of Multivariate Analysis

- In many studies, observations are collected on several variables on each experimental/observational unit
- Multivariate analysis is a collection of statistical methods for analyzing these multivariate data sets
- Common Objectives
- Dimensionality reduction
- Classification
- Grouping (Clustering)

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$
\boldsymbol{X}=\left(\begin{array}{cccc}
X_{1,1} & X_{2,1} & \cdots & X_{p, 1} \\
X_{1,2} & X_{2,2} & \cdots & X_{p, 2} \\
\vdots & \cdots & \ddots & \vdots \\
X_{1, n} & X_{2, n} & \cdots & X_{p, n}
\end{array}\right)
$$

Summary Statistics

- Mean Vector: $\overline{\boldsymbol{X}}=\left(\bar{X}_{1}, \bar{X}_{2}, \cdots, \bar{X}_{p}\right)^{T}$
- Covariance Matrix: $\Sigma=\left\{\sigma_{i j}\right\}_{i, j=1}^{p}$, where $\sigma_{i i}=\operatorname{Var}\left(X_{i}\right), \quad i=1, \cdots, p$ and $\sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right), i \neq j$

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$
\boldsymbol{X}=\left(\begin{array}{cccc}
X_{1,1} & X_{2,1} & \cdots & X_{p, 1} \\
X_{1,2} & X_{2,2} & \cdots & X_{p, 2} \\
\vdots & \cdots & \ddots & \vdots \\
X_{1, n} & X_{2, n} & \cdots & X_{p, n}
\end{array}\right)
$$

Summary Statistics

- Mean Vector: $\overline{\boldsymbol{X}}=\left(\bar{X}_{1}, \bar{X}_{2}, \cdots, \bar{X}_{p}\right)^{T}$
- Covariance Matrix: $\Sigma=\left\{\sigma_{i j}\right\}_{i, j=1}^{p}$, where

$$
\sigma_{i i}=\operatorname{Var}\left(X_{i}\right), \quad i=1, \cdots, p \text { and } \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right), i \neq j
$$

Next, we are going to introduce Principal Component Analysis (PCA), a useful tool for conducting dimension reduction

Example: Monthly Sea Surface Temperatures

Sea Surface Temperatures and Anomalies

- The "data" are gridded at a 2° by 2° resolution from $124^{\circ} \mathrm{E}-70^{\circ} \mathrm{W}$ and $30^{\circ} \mathrm{S}-30^{\circ} \mathrm{N}$. The dimension of this SST data set is 2303 (number of grid points in space) \times 552 (monthly time series from 1970 Jan. to 2015 Dec.)
- Sea-surface temperature anomalies are the temperature differences from the climatology (i.e. long-term monthly mean temperatures)
- We will demonstrate the use of Empirical Orthogonal Function (EOF) analysis to uncover the low-dimensional structure of this spatio-temporal data set

Empirical orthogonal functions (EOFs) are the geophysicist's terminology for the eigenvectors in the eigen-decomposition of an empirical covariance matrix. In its discrete formulation, EOF analysis is simply Principal Component Analysis (PCA). EOFs are usually used

- To find principal spatial structures
- To reduce the dimension (spatially or temporally) in large spatio-temporal datasets

Screen Plot for EOFs

Computer Experiments
Multivariate Analysis
Principal component analysis (PCA)

Perform EOF Decomposition and Plot the First Three Modes

EOF1: The classic ENSO pattern

EOF2: A modulation of the center

EOF3: Messing with the coast of SA and the Northern Pacific.

1998 Jan El Niño Event

EOF 1

CLEMS\%

Computer Experiments
Multivariate Analysis
Principal component analysis (PCA)

Principal Component Analysis

Given a random sample from a p-dimensional random vector $\boldsymbol{X}_{i}=\left\{X_{1, i}, X_{2, i}, \cdots, X_{p, i}\right\}, \quad i=1, \cdots, n$

- Dimension reduction technique
- Large number of variables (p)
- Number of variables (p) may be greater than number of observations (n)
- Create new, uncorrelated variables (principal components) for the follow up analysis
- Principal Component Regression
- Interpretation of principal components can be difficult in some situations

Finding Principal Components

Principal Components (PC) are uncorrelated linear combinations $\tilde{X}_{1}, \tilde{X}_{2}, \cdots, \tilde{X}_{p}$ determined sequentially, as follows:

- The first PC is the linear combination $\tilde{X}_{1}=\boldsymbol{c}_{1}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{1 i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{1}\right)$ subject to $\boldsymbol{c}_{1}^{T} \boldsymbol{c}_{1}=1$
(2) The second PC is the linear combination $\tilde{X}_{2}=\boldsymbol{c}_{2}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{2 i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{2}\right)$ subject to $\boldsymbol{c}_{2}^{T} \boldsymbol{c}_{2}=1$ and $\boldsymbol{c}_{2}^{T} \boldsymbol{c}_{1}=0$
(3) The $j_{t h} \mathrm{PC}$ is the linear combination
$\tilde{X}_{j}=\boldsymbol{c}_{j}^{T} \boldsymbol{X}=\sum_{i=1}^{p} c_{j i} X_{i}$ that maximize $\operatorname{Var}\left(\tilde{X}_{j}\right)$ subject to $\boldsymbol{c}_{j}^{T} \boldsymbol{c}_{j}=1$ and $\boldsymbol{c}_{j}^{T} \boldsymbol{c}_{k}=0 \forall k<j$

Principal Components

- Let Σ, the covariance matrix of \boldsymbol{X}, have eigenvalue-eigenvector pairs $\left(\lambda_{i}, \boldsymbol{e}_{i}\right)_{i=1}^{p}$ with with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$ Then, the $k_{t h}$ principal component is given by

$$
\tilde{X}_{k}=\boldsymbol{e}_{k}^{T} \boldsymbol{X}=e_{k 1} X_{1}+e_{k 2} X_{2}+\cdots e_{k p} X_{p}
$$

- Then,

$$
\begin{aligned}
& \operatorname{Var}\left(\tilde{X}_{i}\right)=\lambda_{i}, \quad i=1, \cdots, p \\
& \operatorname{Cov}\left(\tilde{X}_{j}, \tilde{X}_{k}\right)=0, \quad \forall j \neq k
\end{aligned}
$$

PCA and Proportion of Variance Explained

- It can be shown that

$$
\sum_{i=1}^{p} \operatorname{Var}\left(\tilde{X}_{i}\right)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}=\sum_{i=1}^{p} \operatorname{Var}\left(X_{i}\right)
$$

- The proportion of the total variance associated with the $k_{t h}$ principal component is given by

$$
\frac{\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}}
$$

- If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information

Toy Example 1

Suppose we have $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T}$ where $X_{1} \sim \mathrm{~N}(0,4)$, $X_{2} \sim \mathrm{~N}(0,1)$ are independent

- Total variation $=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=5$
- X_{1} axis explains 80% of total variation
- X_{2} axis explains the remaining 20% of total variation

Toy Example 2

Suppose we have $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T}$ where $X_{1} \sim \mathrm{~N}(0,4)$, $X_{2} \sim \mathrm{~N}(0,1)$ and $\operatorname{Cor}\left(X_{1}, X_{2}\right)=0.8$

- Total variation

$$
=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=\operatorname{Var}\left(\tilde{X}_{1}\right)+\operatorname{Var}\left(\tilde{X}_{2}\right)=5
$$

- $\tilde{X}_{1}=.9175 X_{1}+.3975 X_{2}$ explains 93.9% of total variation
- $\tilde{X}_{2}=.3975 X_{1}-.9176 X_{2}$ explains the remaining 6.1% of total variation

