Lecture 25 Classification & Cluster Analysis

STAT 8020 Statistical Methods II November 24, 2020 Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Model-based

Whitney Huang Clemson University

Classification and Discriminant Analysis

Data:

$\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

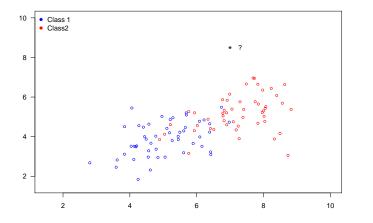
Quantity of interest: $P(Y = k_{th} category | X = x)$

• In this lecture we will focus on binary linear classification

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

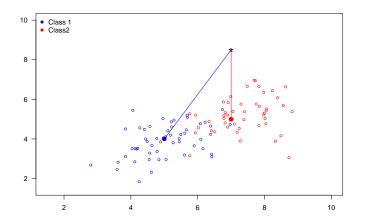
Illustrating Example

Wish to classify a new observation z(*) into one of the two groups (class 1 or class 2)

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means

Hierarchical Clustering

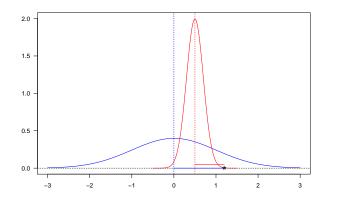
Illustrating Example Cont'd

We could compute the distances from this new observation $z = (z_1, z_2)$ to the groups, for example, $d_1 = \sqrt{(z_1 - \mu_{11})^2 + (z_2 - \mu_{12})^2}$, $d_2 = \sqrt{(z_1 - \mu_{21})^2 + (z_2 - \mu_{22})^2}$. We could assign z to the group with the smallest distance

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Variance Corrected Distance

In this one-dimensional example, $d_1 = |z - \mu_1| > |z - \mu_2|$. Does that mean z is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account. $\tilde{d}_1=|z-\mu_1|/\sigma_1<\tilde{d}_2=|z-\mu_2|/\sigma_2$

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

General Covariance Adjusted Distance: Mahalanobis Distance

The Mahalanobis distance is a measure of the distance between a point z and a distribution F:

$$D_M(\boldsymbol{z}) = \sqrt{(\boldsymbol{z} - \boldsymbol{\mu})^T \Sigma(\boldsymbol{z} - \boldsymbol{\mu})},$$

where $\pmb{\mu}$ is the mean vector and $\boldsymbol{\Sigma}$ is the variance-covariance matrix of F

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Binary Classification

Assume $X_1 \sim MVN(\mu_1, \Sigma)$, $X_2 \sim MVN(\mu_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

• Maximum Likelihood of group membership:

Group 1 if $\ell(\boldsymbol{z}, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) > \ell(\boldsymbol{z}, \boldsymbol{\mu}_2, \boldsymbol{\Sigma})$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} z - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

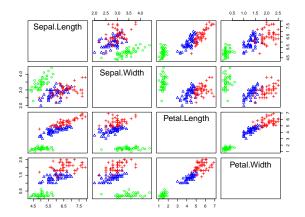
Minimize Mahalanobis distance:

Group 1 if $(z - \mu_1)^T \Sigma^{-1} (z - \mu_1) < (z - \mu_2)^T \Sigma^{-1} (z - \mu_2)$

All the classification methods above are equivalent

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

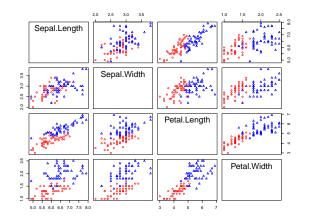
Hierarchical Clustering

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)

Classification Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

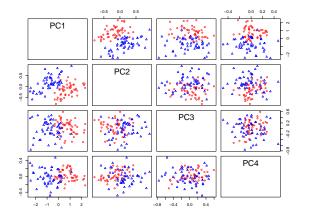
Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

Fisher's iris Data Cont'd

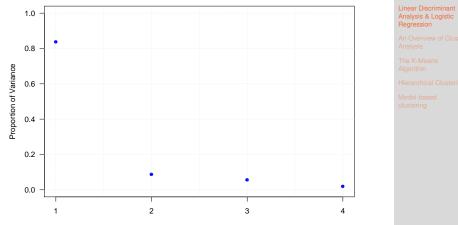
To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Classification Problems

Linear Discriminant Analysis & Logistic Regression

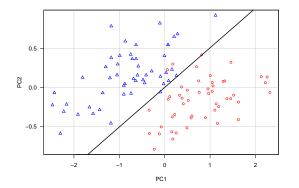
An Overview of Cluster Analysis

The K-Mean Algorithm


Hierarchical Clustering

Screen Plot

Classification & Cluster Analysis


Classificatior Problems

Rank of eigenvalues

Linear Discriminant Analysis

Main idea: Use Bayes rule to compute $P(Y = k | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(Y=k)P(\boldsymbol{X}=\boldsymbol{x}|Y=k)}{P(\boldsymbol{X}=\boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^{K} \pi_k f_k(\boldsymbol{x})}.$ Assuming $f_k(\boldsymbol{x}) \sim \text{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}), \quad k = 1, \cdots, K.$ Use $\hat{\pi}_k = \frac{n_k}{n} \Rightarrow$ it turns out the resulting classifier is linear in \boldsymbol{X}

Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

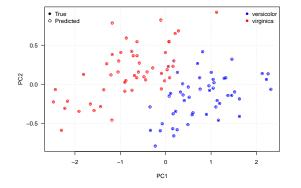
Hierarchical Clustering

Classification Performance Evaluation

fit.LDA versicolor virginica versicolor 47 3 virginica 1 49 Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

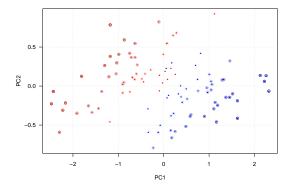
Hierarchical Clustering

Logistic Regression Classifier

Main idea: Model the logit $\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right)$ as a linear function in \boldsymbol{X}

Classification & Cluster Analysis

Classificatior Problems


Linear Discriminant Analysis & Logistic Regression

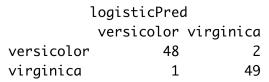
An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

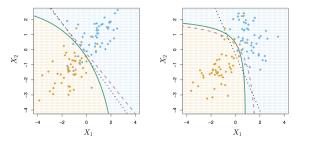
Logistic Regression Classifier Cont'd

Classification & Cluster Analysis


Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis


The K-Means Algorithm

Hierarchical Clustering

Quadratic Discriminant Analysis

In Linear Discriminant Analysis, we **assume** $\{f_k(x)\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

CLEMS

Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

Model-based

Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both Linear Discriminant Analysis (LDA) and Logistic Regression are linear classifiers. The difference is in how the parameters are estimated:

- Logistic regression uses the conditional likelihood based on P(Y|X = x)
- LDA uses the full likelihood based on multivariate normal assumption on *X*
- Despite these differences, in practice the results are often very similar

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

What is Cluster Analysis?

Cluster: a collection of data objects

- "Similar" to one another within the same cluster
- "Dissimilar" to the objects in other clusters
- Cluster analysis: Grouping a set of data objects into clusters
- Clustering is unsupervised classification, unlike classification, there is no predefined classes, and the number of clusters is usually unknown

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Some Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

What Is Good Clustering?

A good clustering method will produce clusters with

- high within-class similarity
- low between-class similarity
- The quality of a clustering result depends on both the similarity measure used and its implementation
- The performance of a clustering method is measured by its ability to discover the hidden patterns

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

Major Clustering Approaches

- Partitioning algorithm: partition the observations into a pre-specified number of clusters, for example, k-means clustering
- Hierarchy algorithm: Construct a hierarchical decomposition of the observations to build a hierarchy of clusters, for example, hierarchical agglomerative clustering
- Model-based Clustering: A model is hypothesized for each of the clusters, for example, Gaussian mixture models

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Mean Algorithm

Hierarchical Clustering

Partitioning Algorithm

Let C_1, \dots, C_K denote sets containing the indices of the observations $\{x_i\}_{i=1}^n$ in each cluster. These sets satisfy two properties:

- C₁ ∪ C₂ ∪ · · · ∪ C_K = {1, · · · , n} ⇒ each observation belongs to at least one of the K clusters
- C_k ∩ C_{k'} = Ø ∀k ≠ k' ⇒ no observation belongs to more than one cluster

For instance, if the i_{th} observation (i.e. x_i) is in the k_{th} cluster, then $i \in C_k$

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

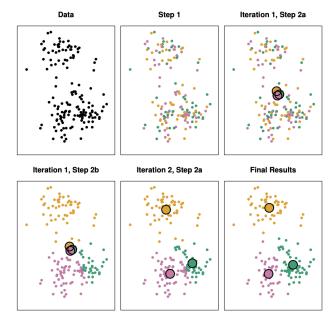
The K-Means Algorithm

Hierarchical Clustering

The k-Means Algorithm

- Step 0: Choose the number of clusters K
- Step 1: Randomly assign a cluster (from 1 to K), to each of the observations. These serve as the initial cluster assignments
- Step 2: Iterate until the cluster assignment stop changing
 - For each of the K cluster, compute the cluster centroid. The k_{th} cluster centroid is the mean vector of the observations in the k_{th} cluster
 - Assign each observations to the cluster whose centroid is closest in terms of Euclidean distance

Classificatior Problems


Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

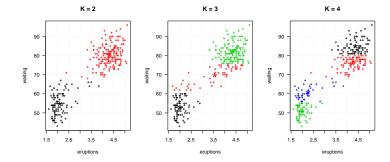
Hierarchical Clustering

k-Means Clustering Illustration

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

K-Means Clustering in R

kmean3.faithful <- kmeans(x = faithful, centers = 3)</pre>

Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

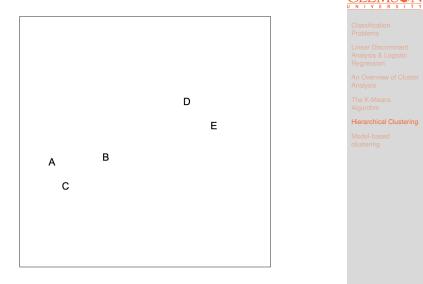
The K-Means Algorithm

Hierarchical Clustering

Hierarchical Clustering

- k-means clustering requires us to pre-specify the number of clusters K
- Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K
- Agglomerative clustering: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy

Classification & Cluster Analysis

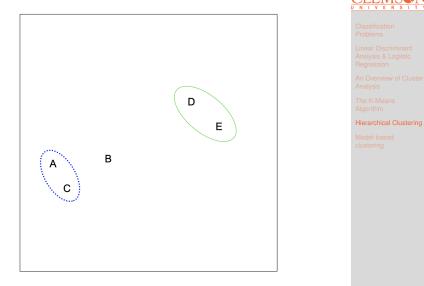

Classification Problems

Linear Discriminant Analysis & Logistic Regression

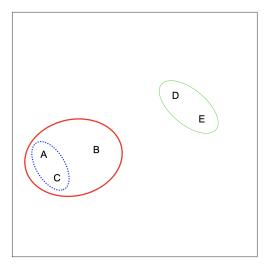
An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering


Classification &

Cluster Analysis

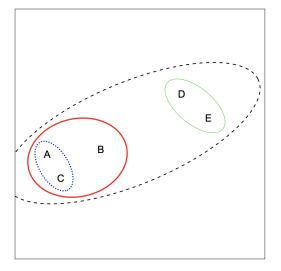

Classification &

Cluster Analysis

Classification &

Cluster Analysis

Classification & Cluster Analysis


Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

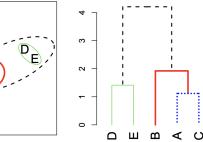
The K-Means Algorithm

Hierarchical Clustering

Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Hierarchical Agglomerative Clustering Algorithm

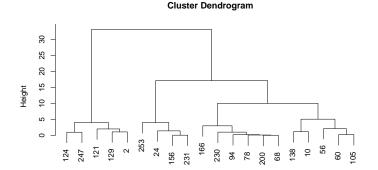
- Start with each observation in its own cluster
- Identify the closest two clusters and merge them
- Repeat
- Ends when all observations are in a single cluster

Dendrogram

Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression


An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Hierarchical Agglomerative Clustering in R

hc.faithful <- hclust(dist(faithful_sample))
plot(hc.faithful)</pre>

dist(as.matrix(faithful_sample)) hclust (*, "complete") Classification & Cluster Analysis

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

lierarchical Clustering

Model-based clustering

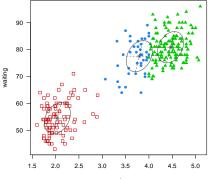
- One disadvantage of hierarchical clustering and k-means is that they are largely heuristic and not based on formal statistical models. Formal inference is not possible
- Model-based clustering is an alternative:
 - Sample observations arise from a mixture distribution of two or more components
 - Each component (cluster) is described by a probability distribution and has an associated probability in the mixture.
 - In Gaussian mixture models, we assume each cluster follows a multivariate normal distribution
 - Therefore, in Gaussian mixture models, the model for clustering is a mixture of multivariate normal distributions

Classificatior Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm


Hierarchical Clustering

Fitting a Gaussian Mixture Model in R

library(mclust)

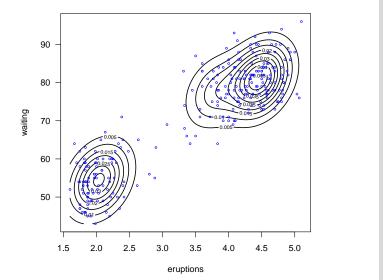
```
## Package 'mclust' version 5.4.5
## Type 'citation("mclust")' for citing this R package in publications.
```

```
BIC <- mclustBIC(faithful)
model1 <- Mclust(faithful, x = BIC)</pre>
```


eruptions

Classification & Cluster Analysis

Classificatior Problems


Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

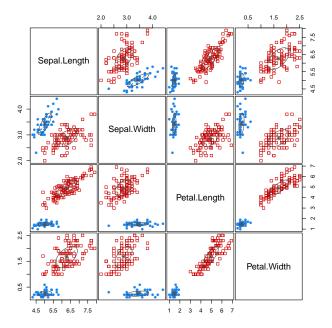
The K-Means Algorithm

Hierarchical Clustering

Fitting a Gaussian Mixture Model in R Cond't

Classification & Cluster Analysis

Classificatior Problems


Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering

Model-Based Clustering Analysis for Iris Data

Classification & Cluster Analysis

Classification Problems

Linear Discriminant Analysis & Logistic Regression

An Overview of Cluster Analysis

The K-Means Algorithm

Hierarchical Clustering