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Classification and Discriminant Analysis

Data:
{Xi, Yi}ni=1,

where Yi is the class information for the ith observation
⇒ Y is a qualitative variable

Classification aims to classify a new observation (or
several new observations) into one of those classes

Quantity of interest: P(Y = kth category|X = x)

In this lecture we will focus on binary linear classification
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Illustrating Example

Wish to classify a new observation z(∗) into one of the two
groups (class 1 or class 2)
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Illustrating Example Cont’d

We could compute the distances from this new observation
z = (z1, z2) to the groups, for example,
d1 =

√
(z1 − µ11)2 + (z2 − µ12)2,

d2 =
√

(z1 − µ21)2 + (z2 − µ22)2. We could assign z to the
group with the smallest distance
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Variance Corrected Distance

In this one-dimensional example, d1 = |z−µ1| > |z−µ2|. Does
that mean z is “closer” to group 2 (red) than group 1 (blue)?
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We should take the “spread” of each group into account.
d̃1 = |z − µ1|/σ1 < d̃2 = |z − µ2|/σ2
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General Covariance Adjusted Distance: Mahalanobis
Distance

The Mahalanobis distance is a measure of the distance
between a point z and a distribution F :

DM (z) =
√

(z − µ)TΣ(z − µ),

where µ is the mean vector and Σ is the variance-covariance
matrix of F
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Binary Classification
Assume X1 ∼ MVN(µ1,Σ), X2 ∼ MVN(µ2,Σ), that is,
Σ1 = Σ2 = Σ

Maximum Likelihood of group membership:

Group 1 if `(z,µ1,Σ) > `(z,µ2,Σ)

Linear Discriminant Function:

Group 1 if (µ1−µ2)TΣ−1z− 1

2
(µ1−µ2)TΣ−1(µ1+µ2) > 0

Minimize Mahalanobis distance:

Group 1 if (z − µ1)TΣ−1(z − µ1) < (z − µ2)TΣ−1(z − µ2)

All the classification methods above are equivalent
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Example: Fisher’s Iris Data

4 variables (sepal length and width and petal length and width),
3 species (setosa, versicolor, and virginica)
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Fisher’s Iris Data Cont’d

Let’s focus on the latter two classes (versicolor, and virginica)
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Fisher’s iris Data Cont’d

To further simplify the matter, let’s focus on the first two PCs of
X
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Screen Plot
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Linear Discriminant Analysis

Main idea: Use Bayes rule to compute
P(Y = k|X = x) = P(Y=k)P(X=x|Y=k)

P(X=x) = πkfk(x)∑K
k=1 πkfk(x)

.
Assuming fk(x) ∼ MVN(µk,Σ), k = 1, · · · ,K. Use
π̂k = nk

n ⇒ it turns out the resulting classifier is linear in X
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Classification Performance Evaluation

−2 −1 0 1 2

−0.5

0.0

0.5

PC1

P
C

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●



Classification &
Cluster Analysis

Classification
Problems

Linear Discriminant
Analysis & Logistic
Regression

An Overview of Cluster
Analysis

The K-Means
Algorithm

Hierarchical Clustering

Model-based
clustering

25.14

Logistic Regression Classifier

Main idea: Model the logit log
(

P(Y=1)
1−P(Y=1)

)
as a linear function

in X
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Logistic Regression Classifier Cont’d
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Quadratic Discriminant Analysis

In Linear Discriminant Analysis, we assume {fk(x)}Kk=1 are
normal densities and Σ1 = Σ2, therefore we obtain a linear
classifier. What if Σ1 6= Σ2 ⇒ we get quadratic discriminant
analysis

Figure: Figure courtesy of An Introduction of Statistical Learning by
G. James et al. pp. 150
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Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both
Linear Discriminant Analysis (LDA) and Logistic Regression
are linear classifiers. The difference is in how the parameters
are estimated:

Logistic regression uses the conditional likelihood based
on P(Y |X = x)

LDA uses the full likelihood based on multivariate normal
assumption on X

Despite these differences, in practice the results are often
very similar
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What is Cluster Analysis?

Cluster: a collection of data objects

“Similar” to one another within the same cluster

“Dissimilar” to the objects in other clusters

Cluster analysis: Grouping a set of data objects into
clusters

Clustering is unsupervised classification, unlike
classification, there is no predefined classes, and the
number of clusters is usually unknown
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Some Examples of Clustering Applications

Marketing: Help marketers discover distinct groups in their
customer bases, and then use this knowledge to develop
targeted marketing programs

Land use: Identification of areas of similar land use in an
earth observation database

Earth-quake studies: Observed earth quake epicenters
should be clustered along continent faults
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What Is Good Clustering?

A good clustering method will produce clusters with

high within-class similarity

low between-class similarity

The quality of a clustering result depends on both the
similarity measure used and its implementation

The performance of a clustering method is measured by
its ability to discover the hidden patterns
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Major Clustering Approaches

Partitioning algorithm: partition the observations into a
pre-specified number of clusters, for example, k-means
clustering

Hierarchy algorithm: Construct a hierarchical
decomposition of the observations to build a hierarchy of
clusters, for example, hierarchical agglomerative clustering

Model-based Clustering: A model is hypothesized for
each of the clusters, for example, Gaussian mixture
models
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Partitioning Algorithm

Let C1, · · · , CK denote sets containing the indices of the
observations {xi}ni=1 in each cluster. These sets satisfy two
properties:

C1 ∪ C2 ∪ · · · ∪ CK = {1, · · · , n} ⇒ each observation
belongs to at least one of the K clusters

Ck ∩ Ck′ = ∅ ∀k 6= k′ ⇒ no observation belongs to more
than one cluster

For instance, if the ith observation (i.e. xi) is in the kth cluster,
then i ∈ Ck
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The k-Means Algorithm

Step 0: Choose the number of clusters K

Step 1: Randomly assign a cluster (from 1 to K), to each
of the observations. These serve as the initial cluster
assignmemts

Step 2: Iterate until the cluster assignment stop changing

For each of the K cluster, compute the cluster centroid. The
kth cluster centroid is the mean vector of the observations
in the kth cluster

Assign each observations to the cluster whose centroid is
closest in terms of Euclidean distance
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k-Means Clustering Illustration
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K-Means Clustering in R
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Hierarchical Clustering

k-means clustering requires us to pre-specify the number
of clusters K

Hierarchical clustering is an alternative approach which
does not require that we commit to a particular choice of K

Agglomerative clustering: This is a “bottom-up” approach:
each observation starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy
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Hierarchical Agglomerative Clustering Illustration



Classification &
Cluster Analysis

Classification
Problems

Linear Discriminant
Analysis & Logistic
Regression

An Overview of Cluster
Analysis

The K-Means
Algorithm

Hierarchical Clustering

Model-based
clustering

25.28

Hierarchical Agglomerative Clustering Illustration
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Hierarchical Agglomerative Clustering Illustration
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Hierarchical Agglomerative Clustering Illustration
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Hierarchical Agglomerative Clustering Illustration
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Hierarchical Agglomerative Clustering Algorithm

1 Start with each observation in its own cluster
2 Identify the closest two clusters and merge them
3 Repeat
4 Ends when all observations are in a single cluster
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Hierarchical Agglomerative Clustering in R
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Model-based clustering

One disadvantage of hierarchical clustering and k-means
is that they are largely heuristic and not based on formal
statistical models. Formal inference is not possible

Model-based clustering is an alternative:

Sample observations arise from a mixture distribution of two
or more components

Each component (cluster) is described by a probability
distribution and has an associated probability in the mixture.

In Gaussian mixture models, we assume each cluster
follows a multivariate normal distribution

Therefore, in Gaussian mixture models, the model for
clustering is a mixture of multivariate normal distributions
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Fitting a Gaussian Mixture Model in R
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Fitting a Gaussian Mixture Model in R Cond’t
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