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Level of Lake Huron 1875–1972

Annual measurements of the level of Lake Huron in feet.
[Source: Brockwell & Davis, 1991]
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Mauna Loa Atmospheric CO2 Concentration

Monthly atmospheric concentrations of CO2 at the Mauna Loa
Observatory [Source: Keeling & Whorf, Scripps Institution of
Oceanography (SIO)]
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US Unemployment Rate 1948 Jan. – 2020 Oct.
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Airflow Signal

A “normal” patient’s 100 Hz sleep airflow signal [Source:
Huang et al. 2020+]
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Time Series Data & Models

A time series is a set of observations made sequentially in
time

Time series analysis is the area of statistics which deals
with the analysis of dependency between different
observations in time series data

A time series model is a probabilistic model that describes
ways that the series data {yt} could have been generated

More specifically, a time series model is usually a
probability model for {Yt : t ∈ T}, a collection of random
variables indexed in time
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Some Objectives of Time Series Analysis

Find a statistical model that adequately explains the
dependence observed in a time series

To conduct statistical inferences, e.g., Is there evidence of
a decreasing trend in the Lake Huron depths?

To forecast future values of the time series based on those
we have already observed
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Features of Times Series

Trends

One can think of trend, µt as continuous changes, usually in
the mean, over longer time scales

Usually the form of the trend is unknown and needs to be
estimated. When the trend is removed, we obtain a
detrended series

Seasonal or periodic components

A seasonal component st constantly repeats itself in time,
i.e., st = st+kd

We need to estimate the form and/or the period d of the
seasonal component to deseasonalize the series

The “noise” process

The noise process, ηt, is the component that is neither trend
nor seasonality

We will focus on finding plausible (typically stationary)
statistical models for this process
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Combining Trend µt, Seasonality st, and Noise ηt Together

There are two commonly used approaches

Additive model:
yt = µt + st + ηt

Multiplicative model:

yt = µtstηt

If all {yt} are positive then we obtain the additive model by
taking logarithms:

log yt = logµt + log st + log ηt
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Means, Autocovariances, and Stationary Processes

The mean function of {Yt} is

µt = E[Yt], t ∈ T

The autocovariance function of {Yt} is

γ(t, t′) = Cov(Yt, Yt′) = E[(Yt − µt)(Yt′ − µt′)], t, t′ ∈ T

When t = t′ we obtain
γ(t, t′) = Cov(Yt, Yt) = Var(Yt) = σ2

t , the variance function
of Yt
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Autocorrelation Function

The autocorrelation function (ACF) of {Yt} is

ρ(t, t′) = Corr(Yt, Yt′) =
γ(t, t′)√

γ(t, t)γ(t′, t′)

It measures the strength of linear association between Yt and
Yt′

Properties:

1 −1 ≤ ρ(t, t′) ≤ 1, t, t′ ∈ T

2 ρ(t, t′) = ρ(t′, t), ∀t, t′ ∈ T ; ρ(t, t) = 1, ∀t ∈ T

3 ρ(t, t′) is a non-negative definite function
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Stationary Processes

We will still try to keep our models for {ηt} as simple as
possible by assuming stationarity, meaning that some
characteristic of {ηt} does not depend on the time points, only
on the “time lag” between time points:

E[ηt] = 0, ∀t ∈ T

Cov(ηt, ηt′) = γ(t′ − t) = Cov(ηt+s, ηt′+s)

⇒ autocorrelation function (ACF):

ρ(h) =
γ(h)

γ(0)
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Autoregressive Moving Average (ARMA) Models

Let {Zt} be independent and identical random variables that
follow N(0, σ2)

Moving Average Processes (MA(q)):
ηt = Zt + θ1Zt−1 + θ2Zt−2 · · ·+ θqZt−q

Autoregressive Processes (AR(p)):
ηt = φ1ηt−1 + φ2ηt−2 + · · ·+ φpηt−p + Zt

Autoregressive Moving Average Processes ARMA(p,q):
ηt = φ1ηt−1 + φ2ηt−2 + · · ·+ φpηt−p + Zt + θ1Zt−1 +
θ2Zt−2 + · · ·+ θqZt−q
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Autocorrelation Plot
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Lake Huron Case Study

Source: https://www.worldatlas.com/articles/
what-states-border-lake-huron.html

Detrending

Model selection and fitting

Forecasting

See R lab 22 for a demo

https://www.worldatlas.com/articles/what-states-border-lake-huron.html
https://www.worldatlas.com/articles/what-states-border-lake-huron.html

	Time Series Data
	Objectives of Time Series Analysis
	Features of Times Series
	Means & Autocovariances
	A Case Study

