Time Series Analysis

CLEMS#N

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

A Case Study

Whitney Huang Clemson University

Lecture 26 Time Series Analysis

STAT 8020 Statistical Methods II December 1, 2020 Agenda

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Level of Lake Huron 1875–1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Mauna Loa Atmospheric CO₂ Concentration

Monthly atmospheric concentrations of CO_2 at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography (SIO)]

Time Series Analysis

US Unemployment Rate 1948 Jan. - 2020 Oct.

Time Series Analysis

Airflow Signal

A "normal" patient's 100 Hz sleep airflow signal [Source: Huang et al. 2020+]

Time Series Analysis

Time Series Data & Models

- A time series is a set of observations made sequentially in time
- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations in time series data
- A time series model is a probabilistic model that describes ways that the series data {*y*_t} could have been generated
- More specifically, a time series model is usually a probability model for $\{Y_t : t \in T\}$, a collection of random variables indexed in time

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Some Objectives of Time Series Analysis

- Find a statistical model that adequately explains the dependence observed in a time series
- To conduct statistical inferences, e.g., Is there evidence of a decreasing trend in the Lake Huron depths?
- To forecast future values of the time series based on those we have already observed

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

• Trends

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., $s_t = s_{t+kd}$

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., s_t = s_{t+kd}
 - We need to estimate the form and/or the period *d* of the seasonal component to deseasonalize the series

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., s_t = s_{t+kd}
 - We need to estimate the form and/or the period *d* of the seasonal component to deseasonalize the series
- The "noise" process

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., s_t = s_{t+kd}
 - We need to estimate the form and/or the period *d* of the seasonal component to deseasonalize the series

• The "noise" process

• The noise process, η_t , is the component that is neither trend nor seasonality

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., s_t = s_{t+kd}
 - We need to estimate the form and/or the period *d* of the seasonal component to deseasonalize the series

• The "noise" process

- The noise process, η_t , is the component that is neither trend nor seasonality
- We will focus on finding plausible (typically stationary) statistical models for this process

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Combining Trend μ_t , Seasonality s_t , and Noise η_t Together

There are two commonly used approaches

• Additive model:

$$y_t = \mu_t + s_t + \eta_t$$

• Multiplicative model:

 $y_t = \mu_t s_t \eta_t$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t$$

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Means, Autocovariances, and Stationary Processes

• The mean function of $\{Y_t\}$ is

$$\mu_t = \mathbf{E}[Y_t], \quad t \in T$$

• The autocovariance function of $\{Y_t\}$ is

$$\gamma(t, t') = \text{Cov}(Y_t, Y_{t'}) = \text{E}[(Y_t - \mu_t)(Y_{t'} - \mu_{t'})], \quad t, t' \in T$$

When t = t' we obtain $\gamma(t,t') = \text{Cov}(Y_t,Y_t) = \text{Var}(Y_t) = \sigma_t^2$, the variance function of Y_t

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Autocorrelation Function

The autocorrelation function (ACF) of $\{Y_t\}$ is

$$\rho(t, t') = \operatorname{Corr}(Y_t, Y_{t'}) = \frac{\gamma(t, t')}{\sqrt{\gamma(t, t)\gamma(t', t')}}$$

It measures the strength of linear association between Y_t and Y_{t^\prime}

Properties:

$$1 \leq \rho(t,t') \leq 1, \quad t,t' \in T$$

$$o(t,t') = \rho(t',t), \quad \forall t,t' \in T; \, \rho(t,t) = 1, \quad \forall t \in T$$

)
$$\rho(t,t')$$
 is a non-negative definite function

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Stationary Processes

We will still try to keep our models for $\{\eta_t\}$ as simple as possible by assuming stationarity, meaning that some characteristic of $\{\eta_t\}$ does not depend on the time points, only on the "time lag" between time points:

•
$$E[\eta_t] = 0, \quad \forall t \in T$$

•
$$\operatorname{Cov}(\eta_t, \eta_{t'}) = \gamma(t' - t) = \operatorname{Cov}(\eta_{t+s}, \eta_{t'+s})$$

 \Rightarrow autocorrelation function (ACF):

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow ${\rm N}(0,\sigma^2)$

• Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$ **Time Series Analysis**

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow ${\rm N}(0,\sigma^2)$

- Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$
- Autoregressive Processes (AR(p)): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow ${\rm N}(0,\sigma^2)$

- Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$
- Autoregressive Processes (AR(p)): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$
- Autoregressive Moving Average Processes ARMA(p,q): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q}$

Time Series Analysis

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances

Autocorrelation Plot

Time Series Analysis

Lake Huron Case Study

Source: https://www.worldatlas.com/articles/ what-states-border-lake-huron.html

- Detrending
- Model selection and fitting
- Forecasting

See R lab 22 for a demo

Time Series Data

Objectives of Time Series Analysis

Features of Times Series

Means & Autocovariances