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Level of Lake Huron 1875-1972 U AR
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Annual measurements of the level of Lake Huron in feet. BT e vy
[Source: Brockwell & Davis, 1991]
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Mauna Loa Atmospheric CO, Concentration

Monthly atmospheric concentrations of CO, at the Mauna Loa
Observatory [Source: Keeling & Whorf, Scripps Institution of
Oceanography (S10)]
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Airflow Signal

Time Series Data

A “normal” patient’'s 100 Hz sleep airflow signal [Source:
Huang et al. 2020+]
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Time Series Data & Models

Time Series Data

@ Atime series is a set of observations made sequentially in
time

@ Time series analysis is the area of statistics which deals
with the analysis of dependency between different
observations in time series data

@ A time series model is a probabilistic model that describes
ways that the series data {y,} could have been generated

@ More specifically, a time series model is usually a
probability model for {Y; : ¢t € T'}, a collection of random
variables indexed in time
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Some Objectives of Time Series Analysis

Objectives of Time
Series Analysis

@ Find a statistical model that adequately explains the
dependence observed in a time series

@ To conduct statistical inferences, e.g., Is there evidence of
a decreasing trend in the Lake Huron depths?

@ To forecast future values of the time series based on those
we have already observed
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@ One can think of trend, p; as continuous changes, usually in
the mean, over longer time scales

Features of Times Series

Features of Times
Series
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@ One can think of trend, u: as continuous changes, usually in
the mean, over longer time scales
o Usually the form of the trend is unknown and needs to be e

estimated. When the trend is removed, we obtain a
detrended series
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o A seasonal component s; constantly repeats itself in time,
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o Usually the form of the trend is unknown and needs to be Lores ofTimes
estimated. When the trend is removed, we obtain a
detrended series

@ Seasonal or periodic components
o A seasonal component s; constantly repeats itself in time,
i.e., St = St+kd

o We need to estimate the form and/or the period d of the
seasonal component to deseasonalize the series

@ The “noise” process

o The noise process, 1, is the component that is neither trend
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@ One can think of trend, u: as continuous changes, usually in
the mean, over longer time scales

Features of Times Series

o Usually the form of the trend is unknown and needs to be Lores ofTimes
estimated. When the trend is removed, we obtain a
detrended series

@ Seasonal or periodic components
o A seasonal component s; constantly repeats itself in time,
i.e., St = St+kd

o We need to estimate the form and/or the period d of the
seasonal component to deseasonalize the series

@ The “noise” process

o The noise process, 1, is the component that is neither trend
nor seasonality

o We will focus on finding plausible (typically stationary)
statistical models for this process
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Combining Trend 1;, Seasonality s;, and Noise 7, Together

There are two commonly used approaches

Features of Times
Series

@ Additive model:
Yt = Mg + S+ M

@ Multiplicative model:

Yt = HtStT

If all {y,} are positive then we obtain the additive model by
taking logarithms:

logy; = log i + log s¢ + log
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Means, Autocovariances, and Stationary Processes

@ The mean function of {Y;} is
Mt = E[}/t]) t S T Xﬁigz\inances
@ The autocovariance function of {Y;} is
y(t,t) = Cov(Y;, Yy) = E[(Yi — ue) (Yo — o)), 6,8 €T
When ¢ = ¢’ we obtain

y(t,t") = Cov(Yy,Y;) = Var(Y;) = o2, the variance function
of Y;
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Autocorrelation Function

The autocorrelation function (ACF) of {Y;} is
V(1)
V() t)

It measures the strength of linear association between Y; and
}/Yt/

p(t,1') = Corr(Yy, Yy) =

Means &
Autocovariances

Properties:

Q -1<pt,t)<1, t,t'eT
Q p(t.t)=p(t't), Vet eT;p(t,t)=1, VteT

Q p(t,¢') is a non-negative definite function
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Stationary Processes

We will still try to keep our models for {7} as simple as
possible by assuming stationarity, meaning that some
characteristic of {r;} does not depend on the time points, only
on the “time lag” between time points:

Means &
Autocovariances

@ En;] =0, VteT

@ Cov(n,ne) =yt —t) = Cov(Nisrs, Ner+s)

= autocorrelation function (ACF):
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Autoregressive Moving Average (ARMA) Models

Let {Z,} be independent and identical random variables that
follow N(0, 02)

Means &
Autocovariances

@ Moving Average Processes (MA(Q)):
M=2y+ 0121+ 02Zi_o---+ 0,74
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Autoregressive Moving Average (ARMA) Models

Let {Z,} be independent and identical random variables that
follow N(0, 02)

Means &
Autocovariances

@ Moving Average Processes (MA(Q)):
M=2y+ 0121+ 02Zi_o---+ 0,74

@ Autoregressive Processes (AR(p)):
M = P17Mi—1 + Pafe—2 + -+ PpNp—p + Zy
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Autoregressive Moving Average (ARMA) Models

Let {Z,} be independent and identical random variables that
follow N(0, 02)

Means &
Autocovariances

@ Moving Average Processes (MA(Q)):
M=2y+ 0121+ 02Zi_o---+ 0,74

@ Autoregressive Processes (AR(p)):
M= P1M—1 + PaM—2 + -+ + GpNe—p + 24

@ Autoregressive Moving Average Processes ARMA(p,q):

M= P1M—1 + Pafe—2 + -+ Qp—p + Zt + 01 2,1 +
02210+ +04Z4
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Autocorrelation Plot
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Lake Huron Case Study

Source: https://www.worldatlas.com/articles/
what-states-border-lake-huron.html

@ Detrending
@ Model selection and fitting

@ Forecasting
See R lab 22 for a demo
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