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Normal Error Regression Model Rogreasion i
CLEMS@N
Reca” Confidence and

Prediction Intervals

Yi=Bo+ BiXi+ei

o Further assume ¢; ~ N(0,0?%) = Y; ~ N(By + B1X;,0?)

@ With normality assumptlon we can derive the sampling
distribution of 3, and 3, =

Bi=B1 5. — el
¢ e T Oh T S e
Bo—B Ao A X2
(*] ?Tﬂ 0 ~ th—2, O'éU—O' ( +m)

Bo

where t,_, denotes the Student’s t distribution with n — 2
degrees of freedom
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Confidence and

o Reca” Bl Bl ~ tn 2 We Use th|S faCt tO COnStrUCt Prediction Intervals
confldence intervals (Cls) for g;:

|:Bl - ta/27i1726'[§] ; Bl + ta/27n72a'[§1
where « is the confidence level and ¢, /, ,_, denotes the

1 — «/2 percentile of a student’s t distribution with n — 2
degrees of freedom

@ Similarly, we can construct Cls for 5:

|:60 - ta/Z,n72&ﬁ07 BO + ta/2,n72a-ﬁo
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Interval Estimation of E(Y),) Regression Il
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Confidence and
Prediction Intervals

@ We often interested in estimating the mean response for a
particular value of predictor, say, X,. Therefore we would
like to construct Cl for E[Y}]

@ We need sampling distribution of ¥, to form CI:

(Xn—X)?

0T E,le—fo?)

”yhfyh ~ ~
"~ Oy — O
o'yh ? Y,

o Cl:

[Yh - ta/Z,n—Z&f/h: Yy + ta/2,11—2a'f//j

@ Quiz: Use this formula to construct Cl for 3y

35



Simple Linear

PI‘edICtIOI‘l |nterva|S Regression Ill

CLEMS@N

UNITVERSITY

Confidence and
Prediction Intervals
@ Suppose we want to predict the response of a future
observation given X = X,

@ We need to account for added variability as a new
observation does not fall directly on the regression line
(i.e., Yhinew) = E[Y3] + 1)

© Replace 6y, by oy, = &\/(1 +14 %) to
construct Cls for Yhnew)

3.6



Understanding Confidence Intervals Rogreasion i
@ Suppose Y = fy + 81X + ¢, where 5y = 3, 8, = 1.5 and CLEMS&N
02 ~ N(O, 1) U NI VERSITY

Confidence and
Prediction Intervals

@ We take 100 random sample each with sample size 20

@ We then construct the 95% ClI for each random sample (=
100 Cls)

Y =3+ 1.5X + error
2.0 4

1.8
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B
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210 N Confidence and
SLR Prediction Intervals

MaxHeartRate

20 30 40 50 60 70

Age
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Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HR,,) of a person

is often said to be related to age Age by the equation:

HR,..x = 220 — Age.

Suppose we have 15 people of varying ages are tested for their

maximum heart rate (bpm)

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39
HR,. 202 186 187 180 156 169 174 172 153 199 193 174 198 183

@ Construct the 95% Cl for 3,

@ Compute the estimate for mean MaxHeartRate given
Age = 40 and construct the associated 90% CI

@ Construct the prediction interval for a new observation
given Age = 40
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Maximum Heart Rate vs. Age: Hypothesis Test for Slope

o H()Zﬂ]:OVS.Ha:ﬂl#O

Q Compute the test statistic: * = i‘—;o = SoBTT = —11.40

@ Compute P-value: P(|t*| > |t,]) = 3.85 x 1078

© Compare to a and draw conclusion:

Reject Hy at « = .05 level, evidence suggests a neg-
ative linear relationship between MaxHeartRate
and Age
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Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

Q H0260:0VS.H,,:,307£0

@ Compute the test statistic: r* /30?30 = 200485 _ 73.27

© Compute P-value: P(|r*| > |t,ps]) = 0

© Compare to o and draw conclusion:

Reject Hy at a = .05 level, evidence suggests
evidence suggests the intercept (the expected
MaxHeartRate at age 0) is different from 0
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Hypothesis Tests for Sage = —1

Ho : Bage = —1VS. Hy : fage # —1

Test Statistic: Ze=(-1) — Z0TTB-(-) _ 5 gg17

3 0.06996
age
0.4
0.3 +
2
2 0.2
I
o
0.1
T T T T T T
-4 ~tobs -2 0 2 tops

Test statistic

P-value: 2 x P(r* > 2.8912) = 0.013, where r* ~ 143
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Analysis of Variance (ANOVA) Approach to Regression e
Partitioning Sums of Squares
@ Total sums of squares in response
n —\2 Analysis of Variance
SST=3 (i~ 7) i

i=1

@ We can rewrite SST as




Partitioning Total Sums of Squares
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Total Sum of Squares: SST Regression Il
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o If we ignored the predictor X, the ¥ would be the best e
(linear unbiased) predictor (ANOVA) Approzch t

Regression

Yi =B+ (1)

@ SST is the sum of squared deviations for this predictor
(e, Y)

@ The total mean square is SST/(rn — 1) and represents an
unbiased estimate of ¢ under the model (1).



Regression Sum of Squares: SSR

@ SSR: YL, (Y — ¥)?

@ Degrees of freedom is 1 due to the inclusion of the slope,
ie.,
Yi = fo + B1Xi + & (2)

@ “Large” MSR = SSR/1 suggests a linear trend, because

E[MSE] = 0” + 31 > _(X; — X)?

i=1
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@ SSE is simply the sum of squared residuals

Analysis of Variance
(ANOVA) Approach to

SSE = i(Y, — ?,)2 Regression

i=1
@ Degrees of freedom is n — 2 (Why?)

o SSE large when |residuals| are “large" = Y;’s vary
substantially around fitted regression line

@ MSE = SSE/(n — 2) and represents an unbiased estimate
of o> when taking X into account



ANOVA Table and F test

Simple Linear
Regression Ill

Source  df SS MS

Model 1 SSR=>_,(%;,—¥)> MSR=SSR/A

Error n- 2 SSE = Z:’:l(yi — )A/i)z MSE = SSE/(n-2) Analysis of Variance
Total n—1 SST=3,.,Y—7Y)? (ANOVA) Agproch o

o Goal: Totest Hy: 31 =0

MSR

o Test statistics F* = Fg¢

o If 5y = 0then F* should be near one = reject Hy when F*

ulargell

@ We need sampling distribution of F* under Hy = F) ,_»,
where F(d,,d,) denotes a F distribution with degrees of

freedom d; and d,
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F Test: Hy : ‘jl Ovs. H, : ‘3| / 0 Regression Iil
fit <- Im(MaxHeartRate ~ Age) m
anova(fit)

Analysis of Variance Table
Analysis of Variance

(ANOVA) Approach to

R
Response: MaxHeartRate egression

Df Sum Sq Mean Sq F value

Age 1 2724.50 2724.50 130.01
Residuals 13 272.43 20.9%

Pr(>F)
Age 3.848e-08 ***

Null distribution of F test statistic
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SLR: F-Test vs. T-test Regrossion i

Regression Ill
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ANOVA Table and F-Test D
Analysis of Variance Table
(ANOVA) Approscn t
Response: MaxHeartRate R
Df Sum Sq Mean Sq
Age 1 2724.50 2724.50

Residuals 13 272.43 20.96
F value Pr(>F)
Age 130.01 3.848e-08

Parameter Estimation and T-Test

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 210.04846 2.80694 73.27 < 2e-16
Age -0.79773 0.06996 -11.40 3.85e-08
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Analysis of Variance

In this lecture, we reviewed
@ Residual analysis to check model assumptions Regresson

o statistical inference for 8y and 3,
@ Confidence/Prediction Intervals and Hypothesis Testing

@ Analysis of Variance (ANOVA) Approach to Linear
Regression
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