Lecture 3

Simple Linear Regression III

Reading: Chapter 11

STAT 8020 Statistical Methods II August 27, 2020

Confidence and

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Whitney Huang Clemson University

Agenda

Prediction Intervals

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Confidence and Prediction Intervals

2 Hypothesis Testing

Normal Error Regression Model

CLEMS IN

Simple Linear

Confidence and

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the **sampling** distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\bullet \quad \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

$$\bullet \ \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Confidence Intervals

CLEMS N

• Recall $\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\beta_1}} \sim t_{n-2}$, we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Confidence and

Hypothesis Testing

Interval Estimation of $E(Y_h)$

- Regression III

 CLEMS
- Confidence and
- Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

- We often interested in estimating the **mean** response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $\mathrm{E}[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:

CI:

$$\left[\hat{Y}_h - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}\right]$$

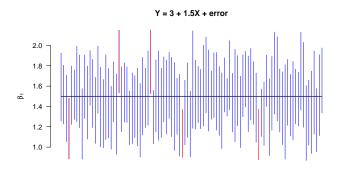
• **Quiz:** Use this formula to construct CI for β_0

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{h(new)} = E[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_{\text{h(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \text{ to construct CIs for } Y_{\text{h(new)}}$

Understanding Confidence Intervals

- Suppose $Y=\beta_0+\beta_1X+\varepsilon$, where $\beta_0=3$, $\beta_1=1.5$ and $\sigma^2\sim N(0,1)$
- We take 100 random sample each with sample size 20
- \bullet We then construct the 95% CI for each random sample (\Rightarrow 100 CIs)



Prediction Intervals

Hypothesis Testing

Confidence Intervals vs. Prediction Intervals



Simple Linear Regression III

Confidence and Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HR_{max}) of a person is often said to be related to age Age by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Confidence and Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

Regression III

CLEMS
UNIVERSITY

Simple Linear

Prediction intervals

Analysis of Variance (ANOVA) Approach to Regression

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
 - ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **Outpute** P-value: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **Output** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between <code>MaxHeartRate</code> and <code>Age</code>

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

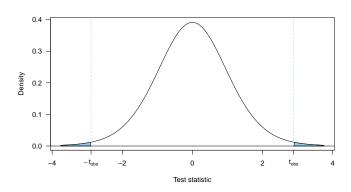
- $0 H_0: \beta_0 = 0 \text{ vs. } H_a: \beta_0 \neq 0$
 - Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- Compute **P-value**: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- Compare to α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Hypothesis Tests for $\beta_{age} = -1$

$$H_0: eta_{\mathrm{age}} = -1 \ \mathrm{vs.} \ H_a: eta_{\mathrm{age}}
eq -1$$

Test Statistic:
$$\frac{\hat{\beta}_{age}-(-1)}{\hat{\sigma}_{\hat{\beta}_{age}}} = \frac{-0.79773-(-1)}{0.06996} = 2.8912$$



P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Prediction Intervals

Hypothesis Testing

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

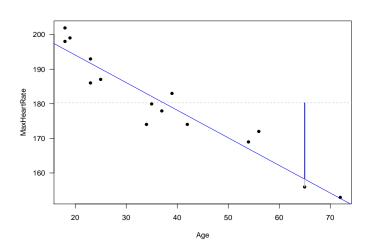
Simple Linear Regression III

Prediction Intervals

Analysis of Variance (ANOVA) Approach to

Prediction Intervals

Hypothesis Testing



Total Sum of Squares: SST

UNIVERSIT

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The **total mean square** is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

Regression Sum of Squares: SSR

Simple Linear Regression III

Confidence and

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

• "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \bar{X})^2$$

Error Sum of Squares: SSE

CLEMS N

I I a subsector Transfer

Analysis of Variance (ANOVA) Approach to Regression

SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

ANOVA Table and F test

Source	df	SS	MS
Model	1	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	MSR = SSR/1
Error	n-2	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Total	n-1	$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$	

- Goal: To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1=0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

Prediction Intervals

Hypothesis lesting

```
fit <- lm(MaxHeartRate ~ Age)
anova(fit)</pre>
```

Analysis of Variance Table

Response: MaxHeartRate

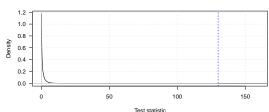
Df Sum Sq Mean Sq F value Age 1 2724.50 2724.50 130.01

Residuals 13 272.43 20.96

Pr(>F)

Age 3.848e-08 ***

Null distribution of F test statistic



Simple Linear Regression III

Prediction Intervals

Hypothesis Testing

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq

Age 1 2724.50 2724.50

Residuals 13 272.43 20.96

F value Pr(>F)

Age 130.01 3.848e-08

Parameter Estimation and T-Test

Coefficients:

Prediction Intervals

Hypothesis Testing

Summary

Confidence and

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

In this lecture, we reviewed

- Residual analysis to check model assumptions
- statistical inference for β_0 and β_1
- Confidence/Prediction Intervals and Hypothesis Testing
- Analysis of Variance (ANOVA) Approach to Linear Regression