Lecture 3 Simple Linear Regression III

Reading: Chapter 11

STAT 8020 Statistical Methods II August 27, 2020

Whitney Huang Clemson University

Agenda

Confidence and
Prediction Intervals
Hypothesis Testing
Analysis of Variance
(1) Confidence and Prediction Intervals
(2) Hypothesis Testing
(3) Analysis of Variance (ANOVA) Approach to Regression

Normal Error Regression Model

Recall

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Further assume $\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \Rightarrow Y_{i} \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_{1}$ and $\hat{\beta}_{0} \Rightarrow$
- $\frac{\hat{\beta}_{1}-\beta_{1}}{\hat{\sigma}_{\hat{\beta}_{1}}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_{1}}=\frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}$
- $\frac{\hat{\beta}_{0}-\beta_{0}}{\hat{\sigma}_{\hat{\beta}_{0}}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_{0}}=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}$
where t_{n-2} denotes the Student's t distribution with $n-2$ degrees of freedom

Confidence Intervals

- Recall $\frac{\hat{\beta}_{1}-\beta_{1}}{\hat{\sigma}_{\hat{\beta}_{1}}} \sim t_{n-2}$, we use this fact to construct confidence intervals (Cls) for β_{1} :

$$
\left[\hat{\beta}_{1}-t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{\beta}_{1}}, \hat{\beta}_{1}+t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{\beta}_{1}}\right]
$$

where α is the confidence level and $t_{\alpha / 2, n-2}$ denotes the $1-\alpha / 2$ percentile of a student's t distribution with $n-2$ degrees of freedom

- Similarly, we can construct Cls for β_{0} :

$$
\left[\hat{\beta}_{0}-t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{\beta}_{0}}, \hat{\beta}_{0}+t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{\beta}_{0}}\right]
$$

Interval Estimation of $\mathrm{E}\left(Y_{h}\right)$

- We often interested in estimating the mean response for a particular value of predictor, say, X_{h}. Therefore we would like to construct Cl for $\mathrm{E}\left[Y_{h}\right]$
- We need sampling distribution of \hat{Y}_{h} to form CI:
- $\frac{\hat{Y}_{h}-Y_{h}}{\hat{\sigma}_{\hat{Y}_{h}}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_{h}}=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}$
- Cl :

$$
\left[\hat{Y}_{h}-t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{Y}_{h}}, \hat{Y}_{h}+t_{\alpha / 2, n-2} \hat{\sigma}_{\hat{Y}_{h}}\right]
$$

- Quiz: Use this formula to construct CI for β_{0}
- Suppose we want to predict the response of a future observation given $X=X_{h}$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{\mathrm{h}(\text { new })}=\mathrm{E}\left[Y_{h}\right]+\varepsilon_{h}$)
- Replace $\hat{\sigma}_{\hat{Y}_{h}}$ by $\hat{\sigma}_{\hat{Y}_{\text {hnew }}}=\hat{\sigma} \sqrt{\left(1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-X\right)^{2}}\right)}$ to construct Cls for $Y_{\mathrm{h} \text { (new) }}$

Understanding Confidence Intervals

- Suppose $Y=\beta_{0}+\beta_{1} X+\varepsilon$, where $\beta_{0}=3, \beta_{1}=1.5$ and $\sigma^{2} \sim \mathrm{~N}(0,1)$
- We take 100 random sample each with sample size 20
- We then construct the $95 \% \mathrm{Cl}$ for each random sample (\Rightarrow 100 Cls)

$$
\mathrm{Y}=3 \text { + 1.5X + error }
$$

Confidence Intervals vs. Prediction Intervals

Confidence and
Prediction Intervals
Hypothesis Testing
Analysis of Variance
(ANOVA) Approach to
Aegression

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate $\left(\mathrm{HR}_{\max }\right)$ of a person is often said to be related to age Age by the equation:

$$
\mathrm{HR}_{\max }=220-\text { Age }
$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Age	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
$\mathrm{HR}_{\text {max }}$	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178

- Construct the $95 \% \mathrm{Cl}$ for β_{1}
- Compute the estimate for mean MaxHeartRate given Age $=40$ and construct the associated $90 \% \mathrm{Cl}$
- Construct the prediction interval for a new observation given Age $=40$

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

(${ }^{\text {. }} H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$
(2) Compute the test statistic: $t^{*}=\frac{\hat{\beta}_{1}-0}{\hat{\sigma}_{\hat{\beta}_{1}}}=\frac{-0.7977}{0.06996}=-11.40$
(3) Compute P-value: $\mathrm{P}\left(\left|t^{*}\right| \geq\left|t_{\text {obs }}\right|\right)=3.85 \times 10^{-8}$

- Compare to α and draw conclusion:

Reject H_{0} at $\alpha=.05$ level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

(ㄱ) $H_{0}: \beta_{0}=0$ vs. $H_{a}: \beta_{0} \neq 0$
(2) Compute the test statistic: $t^{*}=\frac{\hat{\beta}_{0}-0}{\hat{\sigma}_{\beta_{0}}}=\frac{210.0485}{2.86694}=73.27$
(3) Compute P-value: $\mathrm{P}\left(\left|t^{*}\right| \geq\left|t_{\text {obs }}\right|\right) \simeq 0$

- Compare to α and draw conclusion:

Reject H_{0} at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Hypothesis Tests for $\beta_{\text {age }}=-1$

$H_{0}: \beta_{\text {age }}=-1$ vs. $H_{a}: \beta_{\text {age }} \neq-1$
Test Statistic: $\frac{\hat{\beta}_{\text {age }}-(-1)}{\hat{\sigma}_{\hat{\text { Page }}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$

P-value: $2 \times \mathbb{P}\left(t^{*}>2.8912\right)=0.013$, where $t^{*} \sim t_{d f=13}$

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

- Total sums of squares in response

$$
\text { SST }=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- We can rewrite SST as

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & =\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}+\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& =\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Error }}+\underbrace{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}_{\text {Model }}
\end{aligned}
$$

Partitioning Total Sums of Squares

Confidence and
Prediction Intervals
Hypothesis Testing
Analysis of Variance (ANOVA) Approach to Regression

Total Sum of Squares: SST

- If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$
\begin{equation*}
Y_{i}=\beta_{0}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is $\mathrm{SST} /(n-1)$ and represents an unbiased estimate of σ^{2} under the model (1).

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

- "Large" MSR = SSR/1 suggests a linear trend, because

$$
\mathrm{E}[M S E]=\sigma^{2}+\beta_{1}^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Error Sum of Squares: SSE

- SSE is simply the sum of squared residuals

$$
\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

- Degrees of freedom is $n-2$ (Why?)
- SSE large when |residuals| are "large" $\Rightarrow Y_{i}$'s vary substantially around fitted regression line
- $\operatorname{MSE}=\mathrm{SSE} /(n-2)$ and represents an unbiased estimate of σ^{2} when taking X into account

ANOVA Table and F test

Source	df	SS	MS
Model	1	SSR $=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$	MSR $=\mathrm{SSR} / 1$
Error	$n-2$	$\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$	MSE $=\mathrm{SSE} /(\mathrm{n}-2)$
Total	$n-1$	$\mathrm{SST}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$	

- Goal: To test $H_{0}: \beta_{1}=0$
- Test statistics $F^{*}=\frac{\text { MSR }}{\text { MSE }}$
- If $\beta_{1}=0$ then F^{*} should be near one \Rightarrow reject H_{0} when F^{*} "large"
- We need sampling distribution of F^{*} under $H_{0} \Rightarrow F_{1, n-2}$, where $F\left(d_{1}, d_{2}\right)$ denotes a F distribution with degrees of freedom d_{1} and d_{2}

F Test: $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$

```
fit <- lm(MaxHeartRate ~ Age)
anova(fit)
```

Analysis of Variance Table				
Response:	MaxHeartRate			
	Df	Sum Sq	Mean Sq	F value
Age	1	2724.50	2724.50	130.01
Residuals	13	272.43	20.96	
		$\operatorname{Pr}(>F)$		
Age		848e-08	***	

Null distribution of F test statistic

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table
Response: MaxHeartRate
Df Sum Sq Mean Sq
Age $\quad 12724.502724 .50$
Residuals $13272.43 \quad 20.96$
F value $\quad \operatorname{Pr}(>F)$
Age $\quad 130.013 .848 \mathrm{e}-08$

Parameter Estimation and T-Test

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

$$
\text { (Intercept) } 210.04846 \quad 2.86694 \quad 73.27<2 e-16
$$

$$
\begin{array}{lllll}
\text { Age } & -0.79773 & 0.06996 & -11.40 & 3.85 \mathrm{e}-08
\end{array}
$$

Summary

In this lecture, we reviewed

- Residual analysis to check model assumptions
- statistical inference for β_{0} and β_{1}
- Confidence/Prediction Intervals and Hypothesis Testing
- Analysis of Variance (ANOVA) Approach to Linear Regression

