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Agenda

1 Analysis of Variance (ANOVA) Approach to Regression

2 Correlation and Coefficient of Determination

3 Residual Analysis: Model Diagnostics and Remedies
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ANOVA Approach to
Linear Regression
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Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares
Total sums of squares in response

SST =

n∑
i=1

(Yi − Ȳ)2

We can rewrite SST as
n∑

i=1

(Yi − Ȳ)2 =

n∑
i=1

(Yi − Ŷi + Ŷi − Ȳ)2

=

n∑
i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
Error

+

n∑
i=1

(Ŷi − Ȳ)2

︸ ︷︷ ︸
Model
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Partitioning Total Sums of Squares
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Total Sum of Squares: SST

If we ignored the predictor X, the Ȳ would be the best
(linear unbiased) predictor

Yi = β0 + εi (1)

SST is the sum of squared deviations for this predictor
(i.e., Ȳ)

The total mean square is SST/(n− 1) and represents an
unbiased estimate of σ2 under the model (1).
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Regression Sum of Squares: SSR

SSR:
∑n

i=1(Ŷi − Ȳ)2

Degrees of freedom is 1 due to the inclusion of the slope,
i.e.,

Yi = β0 + β1Xi + εi (2)

“Large” MSR = SSR/1 suggests a linear trend, because

E[MSE] = σ2 + β2
1

n∑
i=1

(Xi − X̄)2
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Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

SSE =

n∑
i=1

(Yi − Ŷi)
2

Degrees of freedom is n− 2 (Why?)

SSE large when |residuals| are “large"⇒ Yi’s vary
substantially around fitted regression line

MSE = SSE/(n− 2) and represents an unbiased estimate
of σ2 when taking X into account
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ANOVA Table and F test

Source df SS MS
Model 1 SSR =

∑n
i=1(Ŷi − Ȳ)2 MSR = SSR/1

Error n− 2 SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE/(n-2)

Total n− 1 SST =
∑n

i=1(Yi − Ȳ)2

Goal: To test H0 : β1 = 0

Test statistics F∗ = MSR
MSE

If β1 = 0 then F∗ should be near one⇒ reject H0 when F∗

“large"

We need sampling distribution of F∗ under H0 ⇒ F1,n−2,
where F(d1, d2) denotes a F distribution with degrees of
freedom d1 and d2
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F Test: H0 : β1 = 0 vs. Ha : β1 6= 0
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SLR: F-Test vs. T-test

ANOVA Table and F-Test

Parameter Estimation and T-Test
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Correlation and
Coefficient of
Determination
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Correlation and Simple Linear Regression

Pearson Correlation: r =
∑n

i=1(Xi−X̄)(Yi−Ȳ)√∑n
i=1(Xi−X̄)2

∑n
i=1(Yi−Ȳ)2

−1 ≤ r ≤ 1 measures the strength of the linear
relationship between Y and X

We can show

r = β̂1

√∑n
i=1(Xi − X̄)2∑n
i=1(Yi − Ȳ)2 ,

this implies
β1 = 0 in SLR ⇔ ρ = 0
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Coefficient of Determination R2

Defined as the proportion of total variation explained by
SLR

R2 =

∑n
i=1(Ŷi − Ȳ)2∑n
i=1(Yi − Ȳ)2 =

SSR
SST

= 1− SSE
SST

We can show r2 = R2:

r2 =

(
β̂1,LS

√∑n
i=1(Xi − X̄)2∑n
i=1(Yi − Ȳ)2

)2

=
β̂2

1,LS
∑n

i=1(Xi − X̄)2∑n
i=1(Yi − Ȳ)2

=
SSR
SST

= R2
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Maximum Heart Rate vs. Age: r and R2

Interpretation:

There is a strong negative linear relationship between
MaxHeartRate and Age. Furthermore, ∼ 91% of the
variation in MaxHeartRate can be explained by Age.
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Residual Analysis:
Model Diagnostics and

Remedies
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Residuals

The residuals are the differences between the observed
and fitted values:

ei = Yi − Ŷi,

where Ŷi = β̂0 + β̂1Xi

ei is NOT the error term εi = Yi − E[Yi]

Residuals are very useful in assessing the
appropriateness of the assumptions on εi. Recall

E[εi] = 0

Var[εi] = σ2

Cov[εi, εj] = 0, i 6= j
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Maximum Heart Rate vs. Age Residual Plot: ε vs. X
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Interpreting Residual Plots

Figure: Figure courtesy of Faraway’s Linear Models with R (2005, p.
59).
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Model Diagnostics and Remedies
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Transform X

Nonlinear regression
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Extrapolation in SLR
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Summary of SLR

Model: Yi = β0 + β1Xi + εi

Estimation: Use the method of least squares to estimate
the parameters

Inference

Hypothesis Testing

Confidence/prediction Intervals

ANOVA

Model Diagnostics and Remedies
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