Lecture 4 Simple Linear Regression IV

Reading: Chapter 11

STAT 8020 Statistical Methods II September 1, 2020

Whitney Huang Clemson University

Agenda

Analysis of Variance
(ANOVA) Approach to Rearaccion

Correlation and
Coefficient of

2 Correlation and Coefficient of Determination
(3) Residual Analysis: Model Diagnostics and Remedies

ANOVA Approach to Linear Regression

Analysis of Variance (ANOVA) Approach to Regression

Correlation and
Coefficient of
Determination
Residual Analysis:
Model Diagnostics ard Remedies

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

- Total sums of squares in response

$$
\mathrm{SST}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- We can rewrite SST as

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & =\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}+\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& =\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}_{\text {Error }}+\underbrace{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}_{\text {Model }}
\end{aligned}
$$

Partitioning Total Sums of Squares

Analysis of Variance (ANOVA) Approach to Regression

Correlation and
Coefficient of
Determination
Residual Analysis
Model Diagnostics and Remedies

Total Sum of Squares: SST

- If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$
\begin{equation*}
Y_{i}=\beta_{0}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is $\mathrm{SST} /(n-1)$ and represents an unbiased estimate of σ^{2} under the model (1).

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \tag{2}
\end{equation*}
$$

- "Large" MSR = SSR/1 suggests a linear trend, because

$$
\mathrm{E}[M S E]=\sigma^{2}+\beta_{1}^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Error Sum of Squares: SSE

- SSE is simply the sum of squared residuals

$$
\text { SSE }=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

- Degrees of freedom is $n-2$ (Why?)
- SSE large when |residuals \mid are "large" $\Rightarrow Y_{i}$'s vary substantially around fitted regression line
- $\operatorname{MSE}=$ SSE $/(n-2)$ and represents an unbiased estimate of σ^{2} when taking X into account

ANOVA Table and F test

- Goal: To test $H_{0}: \beta_{1}=0$
- Test statistics $F^{*}=\frac{\text { MSR }}{\text { MSE }}$
- If $\beta_{1}=0$ then F^{*} should be near one \Rightarrow reject H_{0} when F^{*} "large"
- We need sampling distribution of F^{*} under $H_{0} \Rightarrow F_{1, n-2}$, where $F\left(d_{1}, d_{2}\right)$ denotes a F distribution with degrees of freedom d_{1} and d_{2}

F Test: $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$

fit <- lm(MaxHeartRate ~ Age)
anova(fit)

Analysis of Variance
(ANOVA) Approach to Regression

Analysis of Variance Table				
Response:	MaxHeartRate			
		Sum Sa	Mean Sq	F value
Age	1	2724.50	2724.50	130.01
Residuals	13	272.43	20.96	
		Pr($>$ F)		
Age		848e-08	***	

Null distribution of F test statistic

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table
Response: MaxHeartRate
Df Sum Sq Mean Sq
Age $\quad 12724.502724 .50$
Residuals $13272.43 \quad 20.96$
F value $\quad \operatorname{Pr}(>F)$
Age $\quad 130.013 .848 \mathrm{e}-08$
Parameter Estimation and T-Test

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $210.04846 \quad 2.86694 \quad 73.27<2 e-16$
Age $\quad-0.79773 \quad 0.06996$-11.40 $3.85 \mathrm{e}-08$

Correlation and Coefficient of Determination

Analysis of Variance
(ANOVA) Approach to Degranaion

Correlation and
Coefficient of
Determination
Residual Analysis:
Model Diagnostics and Remedies

Correlation and Simple Linear Regression

- Pearson Correlation: $r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$
- $-1 \leq r \leq 1$ measures the strength of the linear relationship between Y and X
- We can show

$$
r=\hat{\beta}_{1} \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}},
$$

this implies

$$
\beta_{1}=0 \text { in SLR } \Leftrightarrow \rho=0
$$

Coefficient of Determination R^{2}

- Defined as the proportion of total variation explained by SLR

$$
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}
$$

- We can show $r^{2}=R^{2}$:

$$
\begin{aligned}
r^{2} & =\left(\hat{\beta}_{1, \mathrm{LS}} \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}\right)^{2} \\
& =\frac{\hat{\beta}_{1, \mathrm{LS}}^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} \\
& =\frac{\mathrm{SSR}}{\mathrm{SST}} \\
& =R^{2}
\end{aligned}
$$

Maximum Heart Rate vs. Age: r and R^{2}

> summary(fit)\$r.squared
[1] 0.9090967
> cor(Age, MaxHeartRate)
[1] -0.9534656

Interpretation:

There is a strong negative linear relationship between MaxHeartRate and Age. Furthermore, ~ 91\% of the variation in MaxHeartRate can be explained by Age.

Analysis of Variance
(ANOVA) Approach to Rearaccion

Residual Analysis: Model Diagnostics and Remedies

Correlation and
Coefficient of
Determination
Residual Analysis: Model Diagnostics and Remedies

Residuals

- The residuals are the differences between the observed and fitted values:

$$
e_{i}=Y_{i}-\hat{Y}_{i},
$$

where $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$

- e_{i} is NOT the error term $\varepsilon_{i}=Y_{i}-\mathrm{E}\left[Y_{i}\right]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_{i}. Recall
- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Analysis of Variance
(ANOVA) Approach to newtersien

Correlation and
Coefficient of
Determination
Residual Analysis:
Model Diagnostics and Remedies

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Model Diagnostics and Remedies

\Rightarrow Nonlinear relationship

- Transform X
- Nonlinear regression

\Rightarrow Non-constant variance
- Transform Y
- Weighted least squares

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Summary of SLR

- Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
- Hypothesis Testing
- Confidence/prediction Intervals
- ANOVA
- Model Diagnostics and Remedies

