Lecture 4 Simple Linear Regression IV Reading: Chapter 11

STAT 8020 Statistical Methods II September 1, 2020 Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

Whitney Huang Clemson University

Agenda

Analysis of Variance ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Nodel Diagnostics and Remedies

Analysis of Variance (ANOVA) Approach to Regression

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Aodel Diagnostics and Remedies

ANOVA Approach to Linear Regression

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

 $\mathsf{SST} = \sum_{i=1}^n (Y_i - \bar{Y})^2$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$
$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Partitioning Total Sums of Squares

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Total Sum of Squares: SST

 If we ignored the predictor X, the Y
 would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., <u>Y</u>)
- The total mean square is SST/(n 1) and represents an unbiased estimate of σ^2 under the model (1).

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Regression Sum of Squares: SSR

• SSR:
$$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

• Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \frac{\beta_1 X_i}{\lambda_i} + \varepsilon_i \tag{2}$$

• "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^{2} + \beta_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

$$\mathsf{SSE} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n 2 (Why?)
- SSE large when |residuals| are "large" ⇒ Y_i's vary substantially around fitted regression line
- MSE = SSE/(n 2) and represents an unbiased estimate of σ² when taking X into account

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

ANOVA Table and F test

Source	u .	SS	MS
Model	1	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	MSR = SSR/1
		$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Total	n-1	$SST = \sum_{i=1}^n (Y_i - \bar{Y})^2$	

- **Goal:** To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1 = 0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^{*} under H₀ ⇒ F_{1,n-2}, where F(d₁, d₂) denotes a F distribution with degrees of freedom d₁ and d₂

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

F Test: $H_0: \beta_1 = 0$ **vs.** $H_a: \beta_1 \neq 0$

```
fit <- lm(MaxHeartRate ~ Age)
anova(fit)
....</pre>
```

A X

Analysis of Variance Table

Response: MaxHeartRate Df Sum Sq Mean Sq F value Age 1 2724.50 2724.50 130.01 Residuals 13 272.43 20.96 Pr(>F) Age 3.848e-08 ***

Null distribution of F test statistic

Test statistic

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate Df Sum Sq Mean Sq Age 1 2724.50 2724.50 Residuals 13 272.43 20.96 F value Pr(>F) Age 130.01 3.848e-08

Parameter Estimation and T-Test

Coefficients:

 Estimate Std. Error t value Pr(>Itl)

 (Intercept) 210.04846
 2.86694
 73.27
 < 2e-16</td>

 Age
 -0.79773
 0.06996
 -11.40
 3.85e-08

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Simple Linear Regression IV

Analysis of Variance ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

Correlation and Coefficient of Determination

Correlation and Simple Linear Regression

i

• Pearson Correlation:
$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

−1 ≤ r ≤ 1 measures the strength of the linear relationship between *Y* and *X*

We can show

$$r = \hat{\beta}_1 \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}},$$

this implies

$$\beta_1 = 0$$
 in SLR $\Leftrightarrow \rho = 0$

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Coefficient of Determination *R*²

 Defined as the proportion of total variation explained by SLR

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

• We can show $r^2 = R^2$:

$$r^{2} = \left(\hat{\beta}_{1,\text{LS}} \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}}\right)^{2}$$
$$= \frac{\hat{\beta}_{1,\text{LS}}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$
$$= \frac{\text{SSR}}{\text{SST}}$$
$$= R^{2}$$

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Maximum Heart Rate vs. Age: r and R²

> summary(fit)\$r.squared
[1] 0.9090967
> cor(Age, MaxHeartRate)
[1] -0.9534656

Interpretation:

There is a strong negative linear relationship between ${\tt MaxHeartRate}$ and ${\tt Age}.$ Furthermore, $\sim 91\%$ of the variation in ${\tt MaxHeartRate}$ can be explained by ${\tt Age}.$

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

Residuals

• The residuals are the differences between the observed and fitted values:

$$e_i=Y_i-\hat{Y}_i,$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

- e_i is NOT the error term $\varepsilon_i = Y_i E[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i. Recall
 - $E[\varepsilon_i] = 0$
 - $\operatorname{Var}[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Simple Linear Regression IV

Analysis of Variance ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Interpreting Residual Plots

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Model Diagnostics and Remedies

 \Rightarrow Nonlinear relationship

- \Rightarrow Non-constant variance
 - Transform Y
 - Weighted least squares

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

4.20

• Transform X

Nonlinear regression

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics and Remedies

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Summary of SLR

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

Simple Linear Regression IV

Analysis of Variance (ANOVA) Approach to Regression

Correlation and Coefficient of Determination