Regression I

Multiple Linear

Lecture 5

Multiple Linear Regression I

Reading: Chapter 12

STAT 8020 Statistical Methods II September 3, 2020

> Whitney Huang Clemson University

Agenda

- **Multiple Linear** Regression I

- **Multiple Linear Regression**
- **Estimation & Inference**
- **General Linear Test**
- **Multicollinearity**

Goal: To model the relationship between two or more explanatory variables (X's) and a response variable (Y) by fitting a **linear equation** to observed data:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Multiple Linear Regression I

Multiple Linear Regression

Estimation & Inference

Multicollinearit

Data: Species Diversity on the Galapagos Islands

Jata: Spec	ies Di	versity	on tr		pagos	ISIA	
		Endemics		Elevation	Nearest	Scruz	Adjacent
Baltra	58	23	25.09		0.6	0.6	1.84
Bartolome	31	21	1.24		0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamano	2	1	0.05	77	1.9	1.9	903.82
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10	7	2.33	168	34.1	290.2	2.85
Eden	8	4	0.03	71	0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58	17	0.57	49	1.1	93.1	58.27
Gardner2	5	4	0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51	23	129.49	343	29.1	85.9	59.56
Onslow	2	2	0.01	. 25	3.3	45.9	0.10
Pinta	104	37	59.56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
Las.Plazas	12	9	0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89		4.4	24.4	572.33
SanCristobal		65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33		0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84		0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

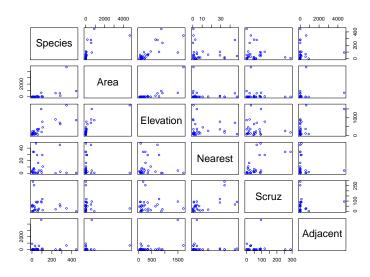
Multiple Linear Regression I

Multiple Linear Regression

Estimation & Inference

Multicollinearity

How Do Geographic Variables Affect Species Diversity?



Multiple Linear Regression I

Multiple Linear Regression

Estimation & Inference

Aulticollinearity

Let's Take a Look at the Correlation Matrix

Multiple Linear
Regression I

Multiple Linea Regression

eneral Linear Test

```
round(cor(gala[, -2]), 3)
          Species
                    Area Elevation Nearest Scruz Adjacent
Species
            1.000
                                     -0.014 -0.171
                                                      0.026
                   0.618
                             0.738
            0.618
                   1.000
                             0.754
                                     -0.111 -0.101
                                                      0.180
Area
Elevation
            0.738
                   0.754
                             1.000
                                     -0.011 -0.015
                                                      0.536
                                      1.000
                                             0.615
                                                     -0.116
Nearest
           -0.014 -0.111
                            -0.011
           -0.171 -0.101
                                     0.615
                                                      0.052
Scruz
                             -0.015
                                             1.000
Adjacent
            0.026
                   0.180
                             0.536
                                     -0.116
                                             0.052
                                                      1.000
```

Call:

lm(formula = Species ~ Elevation, data = gala)

Residuals:

Min 10 Median 30 Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 11.33511 19.20529 0.590 0.56 Elevation 0.20079 0.03465 5.795 3.18e-06 ***

Sianif. codes:

0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Multiple Linear Regression

imation & Inference

```
Call:
```

lm(formula = Species ~ Elevation + Area, data = gala)

Residuals:

Min 1Q Median 3Q Max -192.619 -33.534 -19.199 7.541 261.514

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 17.10519 20.94211 0.817 0.42120 Elevation 0.17174 0.05317 3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

```
Multiple Linear
Regression
```

stimation & Inference

```
Call:
lm(formula = Species ~ Elevation + Area + Adjacent, data = gala)
Residuals:
    Min
             10
                  Median
                              30
                                     Max
-124.064 -34.283 -8.733 27.972 195.973
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.71893 16.90706 -0.338 0.73789
Elevation 0.31498 0.05211 6.044 2.2e-06 ***
       -0.02031 0.02181 -0.931 0.36034
Area
Adjacent -0.07528 0.01698 -4.434 0.00015 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 61.01 on 26 degrees of freedom Multiple R-squared: 0.746, Adjusted R-squared: 0.7167 F-statistic: 25.46 on 3 and 26 DF, p-value: 6.683e-08

```
lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
   data = aala
Residuals:
    Min
              10 Median
                               30
                                      Max
-111.679 -34.898 -7.862 33.460 182.584
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.068221 19.154198 0.369 0.715351
           -0.023938 0.022422 -1.068 0.296318
Area
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz
          -0.240524 0.215402 -1.117 0.275208
Adjacent
          -0.074805 0.017700 -4.226 0.000297
(Intercept)
Area
Flevation
           ***
Nearest
Scruz
           ***
Adjacent
Signif. codes:
 '***' 0.001 '**' 0.01 '*' 0.05 '. '0.1 ' '1
Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-sauared: 0.7658, Adiusted R-sauared: 0.7171
```

F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

CLEMS N U N I V E R S I T Y

> Multiple Linear Regression

Estimation & Inference

Multicollinearit

MLR Topics

Multiple Linear Regression I

Multiple Linear Regression

Estimation & Inference

Multicollinearity

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_{1,n} & X_{2,n} & \cdots & X_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon$$

Error Sum of Squares (SSE) = $\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2$ can be expressed in matrix notation as:

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

Again, we are going to find $\hat{\beta}$ to minimize SSE as our estimate for β

Multiple Linear Regression

Estimation & Inference

Multicollinearity

• The resulting least squares estimate is

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Fitted values:

$$\hat{Y} = X\hat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^TY = HY$$

Residuals:

$$e = Y - \hat{Y} = (I - H)Y$$

Estimation & Inference

• Similar approach as we did in SLR

$$\begin{split} \hat{\sigma}^2 &= \frac{\boldsymbol{e}^T \boldsymbol{e}}{n-p} \\ &= \frac{(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^T (\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-p} \\ &= \frac{\text{SSE}}{n-p} \\ &= \text{MSE} \end{split}$$

ANOVA Table

(L	E	λ	/I '	S	8	1	\
Ū	N	т	٧	Е	R	S	Т	Т	٦

Regression

General Linear Test

Multicollinearity

- F Test: Tests if the predictors $\{X_1,\cdots,X_{p-1}\}$ collectively help explain the variation in Y
 - $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$
 - H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
 - $F^* = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSR}/(p-1)}{\text{SSE}/(n-p)} \stackrel{H_0}{\sim} F(p-1, n-p)$
 - Reject H_0 if $F^* > F(1 \alpha, p 1, n p)$

- We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_p\left(\boldsymbol{\beta}, \sigma^2\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\right) \Rightarrow \hat{\beta}_k \sim \mathrm{N}(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t test:
 - $H_0: \beta_k = 0 \text{ vs. } H_a: \beta_k \neq 0$
 - $\bullet \quad \frac{\hat{\beta}_k \beta_k}{\hat{\sigma}_{\hat{\beta}_k}} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}} \stackrel{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k : $\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{\sigma}_{\hat{\beta}_k}$

Coefficient of Determination

Multiple Linear Regression

Estimation & Inference

Multicollinearit

ullet Coefficient of Determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SSR}}, \quad 0 \le R^2 \le 1$$

- \mathbb{R}^2 usually increases with the increasing p, the number of the predictors
 - Adjusted R^2 , denoted by $R_{\rm adj}^2 = \frac{{\rm SSR}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 5 + 2X_1 + \varepsilon,$$

where $\varepsilon \sim N(0, 1)$ and X_1 and X_2 are independent to each other. Let's fit the following two models to the "data"

Model 1:
$$Y=\beta_0+\beta_1X_1+\varepsilon^1$$

Model 2: $Y=\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon^2$

Question: Which model will "win" in terms of R^2 ?

```
> summary(fit1)
```

Call: $lm(formula = y \sim x1)$

Residuals:

Min 10 Median 30 Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.1720 0.1534 33.71 < 2e-16 *** 1.8660 0.1589 11.74 2.47e-12 *** x1

Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

```
> summary(fit2)
```

Call:

 $lm(formula = y \sim x1 + x2)$

Residuals:

Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1792 0.1518 34.109 < 2e-16 ***
x1 1.8994 0.1593 11.923 2.88e-12 ***
x2 -0.2289 0.1797 -1.274 0.213

Signif. codes:

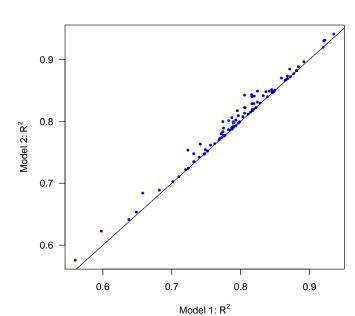
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

Multiple Linear

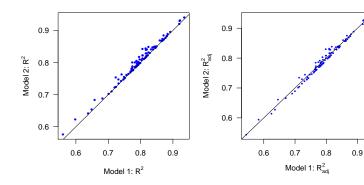
Estimation & Inference

NA DOLLAR



Estimation & Inference

General Linear



General Linear Test

CLEMS#N UNIVERSITY

Estimation & Inference

eneral Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- \bullet Consider a full model with k predictors and reduced model with l predictors (l < k)
- Test statistic: $F^* = \frac{\text{SSE(R)} \text{SSE}(F)/(k-1)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero

```
Multiple Linear
```

Estimation & Inference

Multicollinearity

```
> summary(gala_fit1)
```

Call:
lm(formula = Species ~ Elevation)

Residuals:

Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Listination a interent

Multicollinearity

```
> summary(gala_fit2)
```

Call:

lm(formula = Species ~ Elevation + Area)

Residuals:

Min 1Q Median 3Q Max -192.619 -33.534 -19.199 7.541 261.514

Coefficients:

| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 17.10519 | 20.94211 | 0.817 | 0.42120 | Elevation | 0.17174 | 0.05317 | 3.230 | 0.00325 ** Area | 0.01880 | 0.02594 | 0.725 | 0.47478 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Linear

Estimation & interent

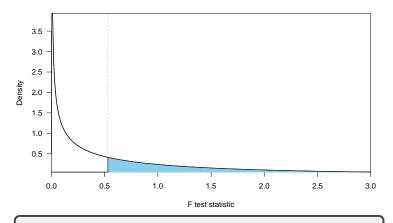
- ullet $H_0:eta_{
 m Area}=0$ vs. $H_a:eta_{
 m Area}
 eq 0$
- $F^* = \frac{(173254 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$
- P-value: P[F > 0.5254] = 0.4748, where $F \sim F(1, 27)$
- > anova(gala_fit1, gala_fit2)
 Analysis of Variance Table

1 28 173254

2 27 169947 1

3307 0.5254 0.4748

Multicollinearity



P-value is the shaped area under the under the density curve

Multicollinearity

Another Simulated Example: Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho = 0.9$. Let's fit the following model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Call:

 $lm(formula = Y \sim X1 + X2)$

Residuals:

Min 10 Median 30 Max -1.63912 -0.59978 0.01897 0.58691 1.74518

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.0154 0.1646 24.390 < 2e-16 *** X1 -0.1032 0.3426 -0.301 0.766 X2 1.7471 0.3654 4.781 5.48e-05 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 0.8601 on 27 degrees of freedom Multiple R-squared: 0.8166, Adjusted R-squared: 0.803 F-statistic: 60.12 on 2 and 27 DF, p-value: 1.135e-10

Multicollinearity cont'd

Multiple Linear Regression

Multicollinearity

- ullet Numerical issue \Rightarrow the matrix $oldsymbol{X}^Toldsymbol{X}$ is nearly singular
- Statistical issue
 - β's are not well estimated
 - β 's may be meaningless
 - ullet R^2 and predicted values are usually OK