
Multiple Linear
Regression II

General Linear Test

Multicollinearity

Variable Selection
Criteria

6.1

Lecture 6
Multiple Linear Regression II
Reading: Chapter 12

STAT 8020 Statistical Methods II
September 8, 2020

Whitney Huang
Clemson University



Multiple Linear
Regression II

General Linear Test

Multicollinearity

Variable Selection
Criteria

6.2

Agenda

1 General Linear Test

2 Multicollinearity
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6.3

Review: Coefficient of Determination

Coefficient of Determination R2 describes proportional of
the variance in the response variable that is predictable
from the predictors

R2 =
SSR
SST

= 1− SSE
SST

, 0 ≤ R2 ≤ 1

R2 usually increases with the increasing p, the number of
the predictors

Adjusted R2, denoted by R2
adj = 1− SSE/(n−p)

SST/(n−1)
attempts to

account for p
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6.4

R2 vs. R2
adj Example

Suppose the true relationship between response Y and
predictors (X1, X2) is

Y = 5 + 2X1 + ε,

where ε ∼ N(0, 1) and X1 and X2 are independent to each
other. Let’s fit the following two models to the “data"

Model 1: Y = β0 + β1X1 + ε1

Model 2: Y = β0 + β1X1 + β2X2 + ε2

Question: Which model will “win” in terms of R2?
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6.5

Model 1 Fit
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Model 2 Fit
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6.7

R2: Model 1 vs. Model 2
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R2
adj: Model 1 vs. Model 2
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6.9

General Linear Test

Comparison of a “full model” and “reduced model” that
involves a subset of full model predictors

Consider a full model with k predictors and reduced model
with ` predictors (` < k )

Test statistic: F ∗ = SSE(R)−SSE(F )/(k−`)
SSE(F )/(n−k−1) ⇒ Testing H0 that

the regression coefficients for the extra variables are all
zero

Example 1: X1, X2, · · · , Xp−1 vs. intercept only⇒ Overall
F test

Example 2: Xj , 1 ≤ j ≤ p− 1 vs. intercept only⇒ t test for
βj

Example 3: X1, X2, X3, X4 vs. X1, X3 ⇒ H0 : β2 = β4 = 0
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6.10

Species Diversity on the Galapagos Islands Revisited: Full
Model
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Species Diversity on the Galapagos Islands Revisited:
Reduce Model
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6.12

Perform a General Linear Test

H0 : βArea = 0 vs. Ha : βArea 6= 0

F ∗ = (173254−169947)/(2−1)
169947/(30−2−1) = 0.5254

P-value: P[F > 0.5254] = 0.4748, where F ∼ F(1, 27)
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6.13

P-value Calculation
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P-value is the shaped area under the under the density
curve
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6.14

Another Example of General Linear Test: Full Model
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6.15

Another Example of General Linear Test: Reduced Model
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6.16

Perform a General Linear Test

H0 : βArea = βNearest = βScruz vs.
Ha : at least one of the three coefficients 6= 0

F ∗ = (100003−89231)/(5−2)
89231/(30−5−1) = 0.9657

P-value: P[F > 0.9657] = 0.425, where F ∼ F(3, 24)
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6.17

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations
among the predictor variables

Numerical issue⇒ the matrix XTX is nearly singular

Statistical issue

β’s are not well estimated

Spurious regression coefficient estimates

R2 and predicted values are usually OK
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6.18

Example

Consider a two predictor model:

Y = β0 + β1X1 + β2X2 + ε

We can show

β̂1|2 =

β̂1 −
√

σ̂2
Y

σ̂2
X1

rX1,X2rY,X2

1− r2X1,X2

,

where β̂1|2 is the estimated partial regression coefficient
for X1 and β̂1 is the estimate for β1 when fitting a simple
linear regression model Y ∼ X1
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6.19

An Simulated Example

Suppose the true relationship between response Y and
predictors (X1, X2) is

Y = 4 + 0.8X1 + 0.6X2 + ε,

where ε ∼ N(0, 1) and X1 and X2 are positively correlated with
ρ = 0.95. Let’s fit the following models:

Model 1: Y = β0 + β1X1 + β2X2 + ε

Model 2: Y = β0 + β1X1 + ε1

Model 3: Y = β0 + β2X2 + ε2
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6.20

Scatter Plot: X1 vs. X2
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6.21

Model 1 Fit
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Model 2 Fit
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6.23

Model 3 Fit



Multiple Linear
Regression II

General Linear Test

Multicollinearity

Variable Selection
Criteria

6.24

Variable Selection

What is the appropriate subset size?

What is the best model for a fixed size?
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6.25

Mallows’ Cp Criterion

(Ŷi − µi)2 = (Ŷi − E(Ŷi) + E(Ŷi)− µi)2

= (Ŷi − E(Ŷi))
2︸ ︷︷ ︸

Variance

+ (E(Ŷi)− µi)2︸ ︷︷ ︸
Bias2

,

where µi = E(Yi|Xi = xi)

Mean squared prediction error (MSPE):∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

Cp criterion measure:

Γp =

∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

σ2

=

∑
Varpred +

∑
Bias2

Varerror
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6.26

Cp Criterion

Do not know σ2 nor numerator

Use MSEX1,··· ,Xp−1 = MSEF as the estimate for σ

For numerator:

Can show
∑n

i=1 σ
2
Ŷi

= pσ2

Can also show
∑n

i=1(E(Ŷi)− µi)
2 = E(SSEF)− (n− p)σ2

⇒ Cp = SSE−(n−p)MSEF+pMSEF
MSEF
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6.27

Cp Criterion Cont’d

Recall

Γp =

∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

σ2

When model is correct E(Cp) ≈ p

When plotting models against p

Biased models will fall above Cp = p

Unbiased models will fall around line Cp = p

By definition: Cp for full model equals p



Multiple Linear
Regression II

General Linear Test

Multicollinearity

Variable Selection
Criteria

6.28

Adjusted R2 Criterion

Adjusted R2, denoted by R2
adj, attempts to take account of the

phenomenon of the R2 automatically and spuriously increasing
when extra explanatory variables are added to the model.

R2
adj = 1− SSE/(n− p− 1)

SST/(n− 1)

Choose model which maximizes R2
adj

Same approach as choosing model with smallest MSE
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6.29

Predicted Residual Sum of Squares PRESS Criterion

For each observation i, predict Yi using model generated
from other n− 1 observations

PRESS =
∑n
i=1(Yi − Ŷi(i))2

Want to select model with small PRESS
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6.30

Other Approaches

Akaike’s information criterion (AIC)

n log(
SSEk
n

) + 2k

Bayesian information criterion (BIC)

n log(
SSEk
n

) + k log(n)

Can be used to compare non-nested models
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