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7.3

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations
among the predictor variables

Numerical issue⇒ the matrix XTX is nearly singular

Statistical issue

β’s are not well estimated

Spurious regression coefficient estimates

R2 and predicted values are usually OK
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7.4

Example

Consider a two predictor model:

Y = β0 + β1X1 + β2X2 + ε

We can show

β̂1|2 =

β̂1 −
√

σ̂2
Y

σ̂2
X1

rX1,X2rY,X2

1− r2X1,X2

,

where β̂1|2 is the estimated partial regression coefficient
for X1 and β̂1 is the estimate for β1 when fitting a simple
linear regression model Y ∼ X1
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7.5

An Simulated Example

Suppose the true relationship between response Y and
predictors (X1, X2) is

Y = 4 + 0.8X1 + 0.6X2 + ε,

where ε ∼ N(0, 1) and X1 and X2 are positively correlated with
ρ = 0.95. Let’s fit the following models:

Model 1: Y = β0 + β1X1 + β2X2 + ε

Model 2: Y = β0 + β1X1 + ε1

Model 3: Y = β0 + β2X2 + ε2
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7.6

Scatter Plot: X1 vs. X2
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7.7

Model 1 Fit
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7.8

Model 2 Fit
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7.9

Model 3 Fit
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7.10

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

VIFi =
1

1− R2
i

to quantifies the severity of multicollinearity in MLR, where R2
i

is the coefficient of determination when Xi is regressed on
the remaining predictors
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7.11

Variable Selection

Multiple Linear Regression Model:

Yi = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + εi, εi
i.i.d.∼ N(0, σ2)

What is the appropriate subset size?

What is the best model for a fixed size?

In the next few slides we will discuss some commonly used
model selection criteria



Multiple Linear
Regression III

Multicollinearity

Variable Selection
Criteria

Model Diagnostics

7.12

Mallows’ Cp Criterion

(Ŷi − µi)2 = (Ŷi − E(Ŷi) + E(Ŷi)− µi)2

= (Ŷi − E(Ŷi))
2︸ ︷︷ ︸

Variance

+ (E(Ŷi)− µi)2︸ ︷︷ ︸
Bias2

,

where µi = E(Yi|Xi = xi)

Mean squared prediction error (MSPE):∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

Cp criterion measure:

Γp =

∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

σ2

=

∑
Varpred +

∑
Bias2

Varerror
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7.13

Cp Criterion

Do not know σ2 nor numerator

Use MSEX1,··· ,Xp−1 = MSEF as the estimate for σ

For numerator:

Can show
∑n

i=1 σ
2
Ŷi

= pσ2

Can also show
∑n

i=1(E(Ŷi)− µi)
2 = E(SSEF)− (n− p)σ2

⇒ Cp = SSE−(n−p)MSEF+pMSEF
MSEF
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7.14

Cp Criterion Cont’d

Recall

Γp =

∑n
i=1 σ

2
Ŷi

+
∑n
i=1(E(Ŷi)− µi)2

σ2

When model is correct E(Cp) ≈ p

When plotting models against p

Biased models will fall above Cp = p

Unbiased models will fall around line Cp = p

By definition: Cp for full model equals p



Multiple Linear
Regression III

Multicollinearity

Variable Selection
Criteria

Model Diagnostics

7.15

Adjusted R2 Criterion

Adjusted R2, denoted by R2
adj, attempts to take account of the

phenomenon of the R2 automatically and spuriously increasing
when extra explanatory variables are added to the model.

R2
adj = 1− SSE/(n− p− 1)

SST/(n− 1)

Choose model which maximizes R2
adj

Same approach as choosing model with smallest MSE
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7.16

Predicted Residual Sum of Squares PRESS Criterion

For each observation i, predict Yi using model generated
from other n− 1 observations

PRESS =
∑n
i=1(Yi − Ŷi(i))2

Want to select model with small PRESS
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7.17

Other Approaches: Information criteria

Akaike’s information criterion (AIC)

n log(
SSEk
n

) + 2k

Bayesian information criterion (BIC)

n log(
SSEk
n

) + k log(n)

Can be used to compare non-nested models
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Automatic Search Procedures

Forward Selection

Backward Elimination

Stepwise Search

All Subset Selection
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7.19

Model Assumptions

Model:

Yi = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + εi, εi
i.i.d.∼ N(0, σ2)

We make the following assumptions:

Linearity:

E(Y |X1, X2, · · · , Xp−1) = β0+β1X1+β2X2+· · ·+βp−1Xp−1

Errors have constant variance, are independent, and
normally distributed

εi
i.i.d.∼ N(0, σ2)
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