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Agenda

1 Variable Selection

2 Model Diagnostics: Residual Plots

3 Model Diagnostics: Influential Points

4 Non-Constant Variance & Transformation
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8.3

Other Approaches: Information criteria

Akaike’s information criterion (AIC)

n log(
SSEk
n

) + 2k

Bayesian information criterion (BIC)

n log(
SSEk
n

) + k log(n)

Can be used to compare non-nested models
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8.4

Automatic Search Procedures

Forward Selection

Backward Elimination

Stepwise Search

All Subset Selection
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8.5

Model Assumptions

Model:

Yi = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + εi, εi
i.i.d.∼ N(0, σ2)

We make the following assumptions:

Linearity:

E(Y |X1, X2, · · · , Xp−1) = β0+β1X1+β2X2+· · ·+βp−1Xp−1

Errors have constant variance, are independent, and
normally distributed

εi
i.i.d.∼ N(0, σ2)
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Observed Values versus Fitted Values Plot
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8.8

Residuals versus Fits Plot

We will revisit this in the end of the lecture
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Assessing Normality of Residuals: Histogram
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Assessing Normality of Residuals: QQ Plot
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Leverage

Recall in MLR that Ŷ = X(XTX)−1XTY = HY where H is
the hat-matrix

The leverage value for the ith observation is defined as:

hi = Hii

Can show that Var(ei) = σ2(1− hi), where ei = Yi − Ŷi is
the residual for the ith observation

1
n ≤ hi ≤ 1, 1 ≤ i ≤ n and h̄ =

∑n
i=1

hi

n = p
n ⇒ a “rule of

thumb" is that leverages of more than 2p
n should be looked

at more closely
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Leverage Values of Species ∼ Elev + Adj
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Studentized Residuals

As we have seen Var(ei) = σ2(1− hi), this suggests the use of
ri = ei

σ̂
√

(1−hi)

ri’s are called studentized residuals. ri’s are sometimes
preferred in residual plots as they have been standardized
to have equal variance.

If the model assumptions are correct then Var(ri) = 1 and
Corr(ei, ej) tends to be small
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Studentized Residuals of Species ∼ Elev + Adj
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Studentized Deleted Residuals

For a given model, exclude the observation i and
recompute β̂(i), σ̂(i) to obtain Ŷi(i)

The observation i is an outlier if Ŷi(i) − Yi is “large”

Can show
Var(Ŷi(i) − Yi) = σ2

(i)

(
1 + xTi (XT

(i)X(i))
−1xi

)
=

σ2
(i)

1−hi

Define the Studentized Deleted Residuals as

ti =
Ŷi(i) − Yi
σ̂2
(i)/1− hi

=
Ŷi(i) − Yi

MSE(i)(1− hi)−1

which are distributed as a tn−p−1 if the model is correct
and ε ∼ N(0, σ2I)



Multiple Linear
Regression IV

Variable Selection

Model Diagnostics:
Residual Plots

Model Diagnostics:
Influential Points

Non-Constant
Variance &
Transformation

8.16

Jackknife Residuals of Species ∼ Elev + Adj
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Influential Observations

DFFITS

Difference between the fitted values Ŷi and the predicted
values Ŷi(i)

DFFITSi =
Ŷi−Ŷi(i)√
MSE(i)hi

Concern if absolute value greater than 1 for small data
sets, or greater than 2

√
p/n for large data sets
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DFFITS of Species ∼ Elev + Adj
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Residual Plot of Species ∼ Elev + Adj
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Residual Plot After Square Root Transformation
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