Lecture 8 Multiple Linear Regression IV Reading: Chapter 13

STAT 8020 Statistical Methods II September 15, 2020 Multiple Linear Regression IV

Variable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Whitney Huang Clemson University

Agenda

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Multiple Linear Regression IV

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Other Approaches: Information criteria

• Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

• Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Automatic Search Procedures

Forward Selection

- Backward Elimination
- Stepwise Search
- All Subset Selection

Multiple Linear Regression IV

Variable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Model Assumptions

Model:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

We make the following assumptions:

• Linearity:

$$E(Y|X_1, X_2, \cdots, X_{p-1}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{p-1} X_{p-1}$$

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Model Assumptions

Model:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

We make the following assumptions:

• Linearity:

$$E(Y|X_1, X_2, \cdots, X_{p-1}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{p-1} X_{p-1}$$

 Errors have constant variance, are independent, and normally distributed

$$\varepsilon_i \overset{i.i.d.}{\sim} \mathrm{N}(0,\sigma^2)$$

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Multiple Linear Regression IV

All models are wrong but some are useful

George E.P. Box

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Observed Values versus Fitted Values Plot

```
N
                                                                                                                          R
mod <- lm(Species ~ Elevation + Adjacent, data = galaNew)</pre>
plot(mod$fitted.values, galaNew$Species, pch = 16, col = "blue")
abline(0, 1, col = "red")
                                                                                                               Model Diagnostics:
     <u>0</u>
     80
galaNew$Species
     200
     9
     0
                                      100
                                                         200
                    0
                                                                            300
                                                                                              400
                                                 mod$fitted values
```

8.7

Multiple Linear

Regression IV

Residuals versus Fits Plot

```
plot(mod$fitted.values, mod$residuals, pch = 16, col = "blue")
abline(h = 0, col = "red")
```


We will revisit this in the end of the lecture

Multiple Linear Regression IV

Assessing Normality of Residuals: Histogram

/ariable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Histogram of mod\$residuals

Assessing Normality of Residuals: QQ Plot

Multiple Linear Regression IV

/ariable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Leverage

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage value for the *i*th observation is defined as:

 $h_i = \boldsymbol{H}_{ii}$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = Y_i \hat{Y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Leverage Values of Species $\sim \texttt{Elev} + \texttt{Adj}$

Multiple Linear Regression IV

/ariable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Studentized Residuals

As we have seen ${\rm Var}(e_i)=\sigma^2(1-h_i),$ this suggests the use of $r_i=\frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- r_i 's are called **studentized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(e_i, e_j)$ tends to be small

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Studentized Residuals of Species $\sim \texttt{Elev} + \texttt{Adj}$

٠ 3 2 1 0 . -1 -2 10 20 25 30 0 5 15

Studentized Residuals

Multiple Linear Regression IV

Variable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

8.14

Studentized Deleted Residuals

- For a given model, exclude the observation *i* and recompute β̂_(i), ô_(i) to obtain Ŷ_{i(i)}
- The observation *i* is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"

• Can show

$$\operatorname{Var}(\hat{Y}_{i(i)} - Y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \frac{\sigma_{(i)}^2}{1 - h_i}$$

Define the Studentized Deleted Residuals as

$$t_i = \frac{\hat{Y}_{i(i)} - Y_i}{\hat{\sigma}_{(i)}^2 / 1 - h_i} = \frac{\hat{Y}_{i(i)} - Y_i}{\mathsf{MSE}_{(i)}(1 - h_i)^{-1}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim {\rm N}({\bf 0},\sigma^2 {\pmb I})$

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Jackknife Residuals of Species $\sim \texttt{Elev} + \texttt{Adj}$

Jacknife Residuals

Multiple Linear Regression IV

Variable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Influential Observations

DFFITS

• Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$

• DFFITS
$$_i = rac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$$

• Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

DFFITS of Species $\sim \texttt{Elev} + \texttt{Adj}$

Influence Diagnostics for Species

Variable Selection

Nodel Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Residual Plot of Species $\sim \texttt{Elev} + \texttt{Adj}$

Residuals 200 ٠ 150 100 -Ф 50 0 -50 . -100 • 100 200 300 400 0 Ŷ

Multiple Linear Regression IV

Variable Selection

Model Diagnostics: Residual Plots

Model Diagnostics: Influential Points

Residual Plot After Square Root Transformation

Multiple Linear Regression IV

N