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Recallin MLR that Y = X (X7 X)"'X7TY = HY where His /e
the hat-matrix

@ The leverage value for the iy, observation is defined as:

@ Can show that Var(e;) = 02(1 — h;), where ¢; = Y; — V; is
the residual for the 4y, observation

0 l<h <1, 1<i<nandh=3, % =2 = a-‘ruleof
thumb" is that leverages of more than Qf should be looked
at more closely
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Leverage Values of Species ~ Elev + Adj
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Studentized Residuals Multiple Linear

Regression V
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Model Diagnostics:
Influential Points

As we have seen Var(e;) = o2(1 — h;), this suggests the use of

— €i
T, =

T

@ r;’s are called studentized residuals. r;’s are sometimes

preferred in residual plots as they have been standardized
to have equal variance.

o If the model assumptions are correct then Var(r;) = 1 and
Corr(e;, e;) tends to be small
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Studentized Residuals of Species ~ Elev + Adj

Studentized Residuals
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Multiple Linear

Studentized Deleted Residuals Eearesarony
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@ For a given model, exclude the observation i and o s
I’ecompute ﬁ(z O’( ) to obtain Y;( ) Influential Points

@ The observation i is an outlier if Yi(i) —Y; is “large”

o Can show .
Var (Y — Vi) —a()(l—i—:l: (X(T)X(i))*lwi) = 2

i

@ Define the Studentized Deleted Residuals as

b ﬁ(i)—Yi B Yi(i)—Yi
e (AJ'(QZ)/I — hz MSE(Z)(l — hi)_l

which are distributed as a t¢,,_,— if the model is correct
and ¢ ~ N(0,02I)



Jackknife Residuals of Species ~ Elev + Adj

Jacknife Residuals
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Inﬂuentlal Observatlons Regression V
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Model Diagnostics:
Influential Points

DFFITS

o Differenpe between the fitted values Y; and the predicted
values Y;(i)

i/i_Yi(i)

/MSE ;) hs

@ Concern if absolute value greater than 1 for small data
sets, or greater than 2./p/n for large data sets

o DFFITS; =
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Multiple Linear

DFFITS Of Species ~ Elev + Adj Regression V
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Influence Diagnostics for Species

érgweshold; 0.63 Model Diagnostics:
Influential Points

DFFITS
o
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Residual Plot of Species ~ Elev + Adj

Residuals
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Residual Plot After Square Root Transformation
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Regression with Both Quantitative and Qualitative Predictors = 'mgnseony

CLEMS@N

UNITVERSITY

Multiple Linear Regression

2
Y =00 +X1+BXo+ -+ Bp1Xp1+¢e, &~N(0,0%)
Regression with Both
Quantitative and

Xl, X27 ttt 7Xp—1 are the predICtorS Qualitative Predictors

Question: What if some of the predictors are qualitative
(categorical) variables?

= We will need to create dummy (indicator) variables for
those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)



Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant
Professors, Associate Professors and Professors in a
college in the U.S. The data were collected as part of the
on-going effort of the college’s administration to moni-
tor salary differences between male and female faculty

members.

> head(Salaries)

rank discipline yrs.since.phd yrs.service sex salary
1 Prof B 19 18 Male 139750
2 Prof B 20 16 Male 173200
3  AsstProf B 4 3 Male 79750
4 Prof B 45 39 Male 115000
5 Prof B 40 41 Male 141500
6 AssocProf B 6 6 Male 97000

Multiple Linear
Regression V
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Regression with Both
Quantital
Qualitative Predictors
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> summary(Salaries) R
rank discipline yrs.since.phd yrs.service
AsstProf : 67 A:181 Min. :1.00 Min. : 0.00
AssocProf: 64 B:216 1st Qu.:12.00 1st Qu.: 7.00
Prof 1266 Median :21.00 Median :16.00
Mean :22.31 Mean :17.61 T
3rd Qu.:32.00 3rd Qu.:27.00 Qe (A
Max. :56.00 Max. 160.00
sex salary
Female: 39  Min. : 57800

Male :358 1st Qu.: 91000
Median :107300
Mean 1113706
3rd Qu.:134185
Max. 1231545

We have three categorical variables, namely, rank,
discipline, and sex.




Dummy Variable Regression v
ole
For binary categorical variables: m

)0 if sex = male,
11 if sex = female.

Regression with Both
Quantitative and

Qualitative Predictors
X )0 ifdiscip=A,
N N discip = B.

For categorical variable with more than two categories:

X _ )0 if rank = Assistant Prof,
)1 if rank = Associated Prof.

x _ )0 if rank = Associated Prof,
T\ 1 if rank = Full Prof.



Design Matrix Regression V.

> head(X) UNIVERSITY
(Intercept) rankAssocProf rankProf disciplineB yrs.since.phd

1 1 0 1 1 19

2 1 1) 1 1 20

3 1 (] 0 1 4

: L 0 - 1 5 Lmm

5 1 0 1 1 40 Qualitative Predictors

6 1 1 0 1 6
yrs.service sexMale

1 18 1

2 16 1

3 3 1

4 39 1

5 41 1

6 6 1

With the design matrix X, we can now use method of
least squares to fit the model Y = X3 + ¢




Coefficients:
Estimate Std. Error t value Pr(Gltl)
(Intercept) 70738.7 3403.0 20.787 < 2e-16b ***

rankAssocProf 12907.6 4145.3 3.114 0.00198 **
rankProf 45066.0 4237.5 10.635 < 2e-16 ***
disciplineB 14417.6 2342.9  6.154 1.88e-09 ***
yrs.since.phd 535.1 241.0 2.220 ©.02698 *
yrs.service -489.5 211.9 -2.310 0.02143 *
sexFemale -4783.5 3858.7 -1.240 0.21584

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 9.05 ‘.’ 0.1 * ’ 1

Residual standard error: 22540 on 390 degrees of freedom
Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463
F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

Question: Interpretation of these dummy variables (e.g.

BrankAssocProf)?
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Suppose we would like to model the relationship between
response Y and a predictor X as a py, degree polynomial in X:

Y =Bo+ B1X; + Bo X4+ BpXP + ¢

Polynomial Regression

We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix takes

the following form:
1 X, X2 o xy
op e
1 X, X2 ... Xp
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Housing Values in Suburbs of Boston Data Set Regression V
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Polynomial Regression Fits

Median value of owner-occupied homes
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Lower status of the population (percent)
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Polynomial Regression
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