Lecture 9 Multiple Linear Regression V Reading: Chapter 13

STAT 8020 Statistical Methods II September 17, 2020 Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Whitney Huang Clemson University

Agenda

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Leverage

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

• The leverage value for the *i*th observation is defined as:

 $h_i = \boldsymbol{H}_{ii}$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = Y_i \hat{Y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \leq h_i \leq 1$, $1 \leq i \leq n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

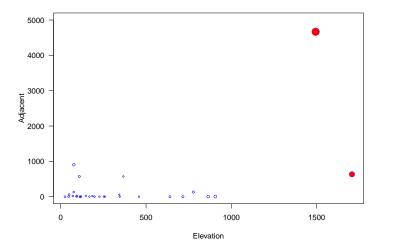
Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Leverage Values of Species $\sim \texttt{Elev} + \texttt{Adj}$



Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Studentized Residuals

As we have seen ${\rm Var}(e_i)=\sigma^2(1-h_i),$ this suggests the use of $r_i=\frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- r_i 's are called **studentized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(e_i, e_j)$ tends to be small

Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Studentized Residuals of Species $\sim \texttt{Elev} + \texttt{Adj}$

2

٠ 3 2 1 0 . -1 -2 10 25 30 0 5 15 20

Studentized Residuals

Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Studentized Deleted Residuals

- For a given model, exclude the observation *i* and recompute β̂_(i), ô_(i) to obtain Ŷ_{i(i)}
- The observation *i* is an outlier if $\hat{Y}_{i(i)} Y_i$ is "large"

• Can show

$$\operatorname{Var}(\hat{Y}_{i(i)} - Y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \frac{\sigma_{(i)}^2}{1 - h_i}$$

Define the Studentized Deleted Residuals as

$$t_i = \frac{\hat{Y}_{i(i)} - Y_i}{\hat{\sigma}_{(i)}^2 / 1 - h_i} = \frac{\hat{Y}_{i(i)} - Y_i}{\mathsf{MSE}_{(i)}(1 - h_i)^{-1}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim {\rm N}({\bf 0},\sigma^2 {\pmb I})$

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Jackknife Residuals of Species $\sim \texttt{Elev} + \texttt{Adj}$

Jacknife Residuals -1 -2

Multiple Linear Regression V

Model Diagnostics:

Influential Observations

DFFITS

• Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$

• DFFITS
$$_i = rac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$$

• Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

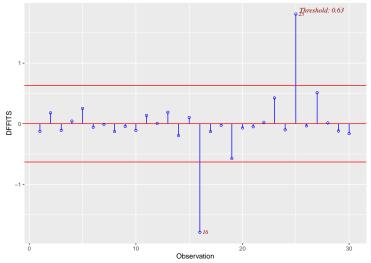
Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

DFFITS of Species $\sim \texttt{Elev} + \texttt{Adj}$

Influence Diagnostics for Species

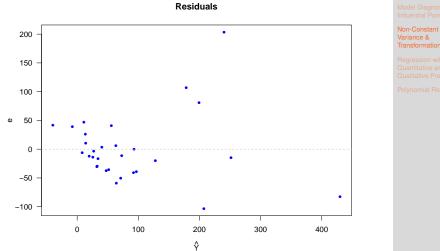


Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

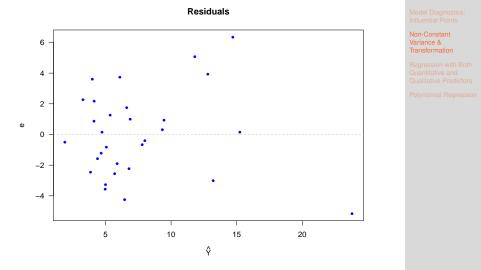
Residual Plot of Species $\sim \texttt{Elev} + \texttt{Adj}$



Multiple Linear Regression V

9.11

Residual Plot After Square Root Transformation



Multiple Linear

Regression V

R

N

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

 $X_1, X_2, \cdots, X_{p-1}$ are the predictors.

Question: What if some of the predictors are qualitative (categorical) variables?

 \Rightarrow We will need to create **dummy (indicator) variables** for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex salary
1	Prof	В	19	18	Male 139750
2	Prof	В	20	16	Male 173200
3	AsstProf	В	4	3	Male 79750
4	Prof	В	45	39	Male 115000
5	Prof	В	40	41	Male 141500
6	AssocProf	В	6	6	Male 97000

Predictors

Prof

AssocProf: 64

AsstProf : 67 A:181

:266

Multiple Linear Regression V

Model Diagnostics: nfluential Points

Non-Constant Variance & Transformation

yrs.service

1st Qu.: 7.00

Median :16.00

3rd Qu.:27.00

: 0.00

:17.61

:60.00

Min.

Mean

Max.

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

	Max.	:56.00
sex	salary	
Female: 39	Min. : 57800	
Male :358	1st Qu.: 91000	
	Median :107300	
	Mean :113706	
	3rd Qu.:134185	
	Max. :231545	

B:216

We have three categorical variables, namely, rank, discipline, and sex.

discipline yrs.since.phd

Mean

Min. : 1.00

Median :21.00

1st Qu.:12.00

3rd Qu.:32.00

:22.31

Dummy Variable

For binary categorical variables:

$$X_{\rm sex} = \begin{cases} 0 & \text{if sex = male,} \\ 1 & \text{if sex = female.} \end{cases}$$

$$X_{\text{discip}} = \begin{cases} 0 & \text{if discip} = A, \\ 1 & \text{if discip} = B. \end{cases}$$

For categorical variable with more than two categories:

$$X_{\text{rank1}} = \begin{cases} 0 & \text{if rank} = \text{Assistant Prof,} \\ 1 & \text{if rank} = \text{Associated Prof.} \end{cases}$$

$$X_{\text{rank2}} = \begin{cases} 0 & \text{if rank} = \text{Associated Prof,} \\ 1 & \text{if rank} = \text{Full Prof.} \end{cases}$$

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Design Matrix

Multiple Linear Regression V

CLEMS N U N I V E R S I T Y

> Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

>	head(X)				
	(Intercept)	rankAssocProf	rankProf	disciplineB	yrs.since.phd
1	1	0	1	1	19
2	1	0	1	1	20
3	1	0	0	1	4
4	1	0	1	1	45
5	1	0	1	1	40
6	1	1	0	1	6
	yrs.service	sexMale			
1	18	1			
2	16	1			
3	3	1			
4	39	1			
5	41	1			
6	. 6	1			

With the design matrix X, we can now use method of least squares to fit the model $Y = X\beta + \varepsilon$

Model Fit

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	70738.7	3403.0	20.787	< 2e-16	***
rankAssocProf	12907.6	4145.3	3.114	0.00198	**
rankProf	45066.0	4237.5	10.635	< 2e-16	***
disciplineB	14417.6	2342.9	6.154	1.88e-09	***
yrs.since.phd	535.1	241.0	2.220	0.02698	*
yrs.service	-489.5	211.9	-2.310	0.02143	*
sexFemale	-4783.5	3858.7	-1.240	0.21584	
Signif. codes:	: 0 '***'	0.001 '**'	0.01 ''	*' 0.05'.	.'0.1''1

Residual standard error: 22540 on 390 degrees of freedom Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463 F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16

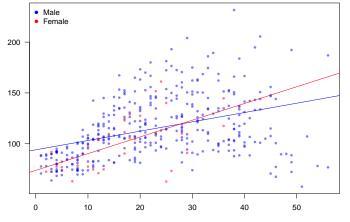
Question: Interpretation of these dummy variables (e.g. $\hat{\beta}_{rankAssocProf}$)?

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

$lm(salary \sim sex * yrs.since.phd)$



yrs.since.phd

Multiple Linear Regression V

Model Diagnostics: Influential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

Polynomial Regression

Suppose we would like to model the relationship between response Y and a predictor X as a p_{th} degree polynomial in X:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \varepsilon$$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$\boldsymbol{X} = \begin{pmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^p \\ 1 & X_2 & X_2^2 & \cdots & X_2^p \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^p \end{pmatrix}$$

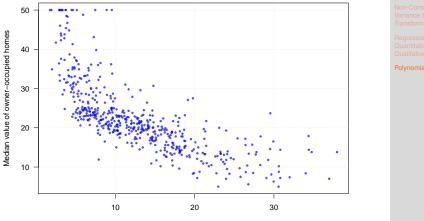
Multiple Linear Regression V

Model Diagnostics: nfluential Points

Non-Constant Variance & Transformation

Regression with Both Quantitative and Qualitative Predictors

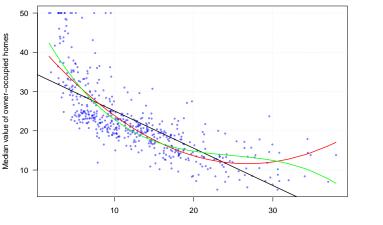
Housing Values in Suburbs of Boston Data Set



Lower status of the population (percent)

Multiple Linear **Regression V**

Polynomial Regression Fits



Lower status of the population (percent)

Multiple Linear Regression V

Model Diagnostics: nfluential Points

Non-Constant Variance & Transformation

tegression with Both Quantitative and Qualitative Predictors