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9.3

Leverage

Recall in MLR that Ŷ = X(XTX)−1XTY = HY where H is
the hat-matrix

The leverage value for the ith observation is defined as:

hi = Hii

Can show that Var(ei) = σ2(1− hi), where ei = Yi − Ŷi is
the residual for the ith observation

1
n ≤ hi ≤ 1, 1 ≤ i ≤ n and h̄ =

∑n
i=1

hi

n = p
n ⇒ a “rule of

thumb" is that leverages of more than 2p
n should be looked

at more closely
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9.4

Leverage Values of Species ∼ Elev + Adj
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9.5

Studentized Residuals

As we have seen Var(ei) = σ2(1− hi), this suggests the use of
ri = ei

σ̂
√

(1−hi)

ri’s are called studentized residuals. ri’s are sometimes
preferred in residual plots as they have been standardized
to have equal variance.

If the model assumptions are correct then Var(ri) = 1 and
Corr(ei, ej) tends to be small



Multiple Linear
Regression V

Model Diagnostics:
Influential Points

Non-Constant
Variance &
Transformation

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

9.6

Studentized Residuals of Species ∼ Elev + Adj
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9.7

Studentized Deleted Residuals

For a given model, exclude the observation i and
recompute β̂(i), σ̂(i) to obtain Ŷi(i)

The observation i is an outlier if Ŷi(i) − Yi is “large”

Can show
Var(Ŷi(i) − Yi) = σ2

(i)

(
1 + xTi (XT

(i)X(i))
−1xi

)
=

σ2
(i)

1−hi

Define the Studentized Deleted Residuals as

ti =
Ŷi(i) − Yi
σ̂2
(i)/1− hi

=
Ŷi(i) − Yi

MSE(i)(1− hi)−1

which are distributed as a tn−p−1 if the model is correct
and ε ∼ N(0, σ2I)
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9.8

Jackknife Residuals of Species ∼ Elev + Adj
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9.9

Influential Observations

DFFITS

Difference between the fitted values Ŷi and the predicted
values Ŷi(i)

DFFITSi =
Ŷi−Ŷi(i)√
MSE(i)hi

Concern if absolute value greater than 1 for small data
sets, or greater than 2

√
p/n for large data sets
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9.10

DFFITS of Species ∼ Elev + Adj
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Residual Plot of Species ∼ Elev + Adj
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Ŷ

e



Multiple Linear
Regression V

Model Diagnostics:
Influential Points

Non-Constant
Variance &
Transformation

Regression with Both
Quantitative and
Qualitative Predictors

Polynomial Regression

9.12

Residual Plot After Square Root Transformation
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9.13

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

Y = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 + ε, ε ∼ N(0, σ2)

X1, X2, · · · , Xp−1 are the predictors.

Question: What if some of the predictors are qualitative
(categorical) variables?

⇒We will need to create dummy (indicator) variables for
those categorical variables

Example: We can encode Gender into 1 (Female) and 0
(Male)
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9.14

Salaries for Professors Data Set

The 2008-09 nine-month academic salary for Assistant
Professors, Associate Professors and Professors in a
college in the U.S. The data were collected as part of the
on-going effort of the college’s administration to moni-
tor salary differences between male and female faculty
members.
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9.15

Predictors

We have three categorical variables, namely, rank,
discipline, and sex.
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9.16

Dummy Variable

For binary categorical variables:

Xsex =

{
0 if sex = male,
1 if sex = female.

Xdiscip =

{
0 if discip = A,
1 if discip = B.

For categorical variable with more than two categories:

Xrank1 =

{
0 if rank = Assistant Prof,
1 if rank = Associated Prof.

Xrank2 =

{
0 if rank = Associated Prof,
1 if rank = Full Prof.
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9.17

Design Matrix

With the design matrix X, we can now use method of
least squares to fit the model Y = Xβ + ε
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9.18

Model Fit

Question: Interpretation of these dummy variables (e.g.
β̂rankAssocProf)?
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lm(salary ∼ sex ∗ yrs.since.phd)
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9.20

Polynomial Regression

Suppose we would like to model the relationship between
response Y and a predictor X as a pth degree polynomial in X:

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βpX

p
i + ε

We can treat polynomial regression as a special case of
multiple linear regression. In specific, the design matrix takes
the following form:

X =


1 X1 X2

1 · · · Xp
1

1 X2 X2
2 · · · Xp

2
... · · ·

. . .
...

...
1 Xn X2

n · · · Xp
n


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Housing Values in Suburbs of Boston Data Set
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Polynomial Regression Fits
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