Bayesian Optimization: A Brief Review

Overview of Bayesian Optimization (BO)

Goal: optimize $f(\mathbf{x})$ over \mathbf{x}

- $f(\mathbf{x})$ is an expensive to evaluate function.
- $f(\mathbf{x})$ is a "black-box".
- The first-order and/or second-order derivatives of $f(\mathbf{x})$ is not available.

References:

- P. Frazier, "A Tutorial on Bayesian Optimization" https://arxiv.org/abs/1807.02811
- Shahriari, Bobak, et al. "Taking the human out of the loop: A review of Bayesian optimization." Proceedings of the IEEE 104.1 (2015): 148-175.

Generic BO Algorithm

Elicit a prior distribution on the function f
while (budget is not exhausted) \{
Find \mathbf{x} that maximizes Acquisition(\mathbf{x}, prior)
Evaluate $f(\mathbf{x})$ at \mathbf{x}
Find the posterior distribution, and update the prior distribution.

Basic Concepts

How to update knowledge, as data is obtained?

- Prior distribution: what you know about parameter β, excluding the information in the data - denoted by $\pi(\beta)$.
- Likelihood: based on modeling assumptions, how [relatively] likely the data Y are if the truth is β - denoted $L(Y \mid \beta)$
So how to get a posterior distribution: stating what we know about β, combining the prior with the data denoted $p(\beta \mid Y)$.
Bayes Theorem used for inference tells us to multiply:

$$
p(\beta \mid Y) \propto L(Y \mid \beta) \pi(\beta)
$$

Essentially, Posterior \propto Likelihood \times Prior.

Generic Bayesian Update Algorithm

Given a prior distribution $\pi^{(0)}(\beta)$ for the target parameter β, and a model assumption $L(Y \mid \beta)$

For $t=1, \ldots, N\{$
obtain data $Y^{(t)}$
find the posterior $p\left(\beta \mid Y^{(t)}\right) \propto L\left(Y^{(t)} \mid \beta\right) \pi^{(t-1)}(\beta)$
update $\pi^{(t)}(\beta) \leftarrow p\left(\beta \mid \boldsymbol{Y}^{(t)}\right)$

A Simple Example: Normal Prior with Known Variance

- Goal: learning parameter μ
- Prior: $\mu \sim N\left(\theta^{(0)}, \sigma^{(0), 2}\right)$
- Data: $Y \mid \mu \sim N\left(\mu, \lambda^{2}\right)$ where λ is known.
- Posterior: $p(\mu \mid Y) \propto L(Y \mid \mu) \pi(\mu)$ is also a normal distribution.

Acquisition functions

- Improvement-based policies: expected improvement, knowledge gradient,...
- Information-based policies: Thompson sampling

Getting into some details... with a simple example

- A collection of finite alternatives $\mathcal{X}=\{1, \ldots, M\}$

Getting into some details... with a simple example

- A collection of finite alternatives $\mathcal{X}=\{1, \ldots, M\}$
- Problem of Interests:

$$
\max _{x \in \mathcal{X}} \mu_{X}
$$

where μ_{x} is the unknown true performance of alternative x.

Getting into some details... with a simple example

- A collection of finite alternatives $\mathcal{X}=\{1, \ldots, M\}$
- Problem of Interests:

$$
\max _{x \in \mathcal{X}} \mu_{X}
$$

where μ_{x} is the unknown true performance of alternative x.

- The true performance μ_{x} can not be directly measured, but can be estimated through observation:

$$
y_{x}=\mu_{x}+\varepsilon_{x}
$$

where $\varepsilon_{x} \sim N\left(0, \sigma^{2}\right)$.
Reference: A Knowledge-Gradient Policy for Sequential Information Collection P.I. Frazier, W.B. Powell \& S. Dayanik. SIAM Journal on Control and Optimization, 2008.

A simple example

- Generating an output y_{x} is expensive.

A simple example

- Generating an output y_{x} is expensive.
- So we have a budget: a total number of N observations.

A simple example

- Generating an output y_{x} is expensive.
- So we have a budget: a total number of N observations.
- Research Question: how to split the N among M alternatives?

A simple example

- Generating an output y_{x} is expensive.
- So we have a budget: a total number of N observations.
- Research Question: how to split the N among M alternatives?
- Keep in mind:

$$
\max _{x \in \mathcal{X}} \mu_{X}
$$

A simple example: statistical modeling

- Setup the prior belief about μ_{X}

$$
\mu_{x} \sim N\left(\theta_{x}^{(0)},\left(\sigma_{x}^{(0)}\right)^{2}\right)
$$

independent with each other over \mathcal{X}.

A simple example: statistical modeling

- Setup the prior belief about μ_{X}

$$
\mu_{x} \sim N\left(\theta_{x}^{(0)},\left(\sigma_{x}^{(0)}\right)^{2}\right)
$$

independent with each other over \mathcal{X}.

- Assume that we collect the outputs $y_{x^{1}}, \ldots, y_{x^{N}}$ are collected one by one.

A simple example: statistical modeling

- Setup the prior belief about μ_{X}

$$
\mu_{x} \sim N\left(\theta_{x}^{(0)},\left(\sigma_{x}^{(0)}\right)^{2}\right)
$$

independent with each other over \mathcal{X}.

- Assume that we collect the outputs $y_{x^{1}}, \ldots, y_{x^{N}}$ are collected one by one.
- When the new observation $y_{x^{(t)}}$ arrives, we find the posterior distribution of μ_{x} given $y_{x^{(t)}}$

$$
\mu_{x} \mid y_{x}(t) \sim N\left(\theta_{x}^{(t)},\left(\sigma_{x}^{(t)}\right)^{2}\right),
$$

A simple example: statistical modeling

- Setup the prior belief about μ_{X}

$$
\mu_{x} \sim N\left(\theta_{x}^{(0)},\left(\sigma_{x}^{(0)}\right)^{2}\right)
$$

independent with each other over \mathcal{X}.

- Assume that we collect the outputs $y_{x^{1}}, \ldots, y_{x^{N}}$ are collected one by one.
- When the new observation $y_{x^{(t)}}$ arrives, we find the posterior distribution of μ_{x} given $y_{X^{(t)}}$

$$
\mu_{x} \mid y_{x}(t) \sim N\left(\theta_{x}^{(t)},\left(\sigma_{x}^{(t)}\right)^{2}\right),
$$

- In the end, find $\max _{x \in \mathcal{X}} \theta_{x}^{(N)}$

Knowledge gradient under a simple example

- Idea: choose x which provides the maximum expected "improvement" to the target problem:

$$
\max _{x \in \mathcal{X}} \mu_{X}
$$

where \mathcal{X} contains K elements.

Knowledge gradient under a simple example

- Idea: choose x which provides the maximum expected "improvement" to the target problem:

$$
\max _{x \in \mathcal{X}} \mu_{x}
$$

where \mathcal{X} contains K elements.

- The Knowledge gradient:

$$
\mathrm{KG}^{(t)}(x)=\mathrm{E}\left[\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t+1)}-\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t)} \mid x^{(t+1)}=x\right]
$$

where the expectation is taken with respect to the posterior predictive distribution of $Y_{X}^{(t+1)}$.

Knowledge gradient under a simple example

- Idea: choose x which provides the maximum expected "improvement" to the target problem:

$$
\max _{x \in \mathcal{X}} \mu_{X}
$$

where \mathcal{X} contains K elements.

- The Knowledge gradient:

$$
\mathrm{KG}^{(t)}(x)=\mathrm{E}\left[\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t+1)}-\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t)} \mid x^{(t+1)}=x\right],
$$

where the expectation is taken with respect to the posterior predictive distribution of $Y_{X}^{(t+1)}$.

- Maximize $\mathrm{KG}^{(t)}(x)$ over \mathcal{X} to select the alternative for new experiment.

Knowledge gradient under a simple example

- K alternatives
- For $k=1, \ldots, K$

$$
\begin{aligned}
& \mu_{k} \sim N\left(\theta_{k}^{(0)}, \sigma_{k}^{(0), 2}\right) \\
& Y_{k} \mid \mu_{k} \sim N\left(\mu_{k}, \lambda_{k}^{2}\right),
\end{aligned}
$$

where λ_{k}^{2} is known.

- Independence between alternatives.
- Model update (if sample from the k-th alternative at step $t+1$):

$$
\begin{gathered}
\theta_{k}^{(t+1)}=\theta_{k}^{(t)}+\frac{\sigma_{k}^{(t), 2}}{\lambda_{k}^{2}+\sigma_{k}^{(t), 2}}\left(Y_{k}^{(t+1)}-\theta_{k}^{(t)}\right) \\
\sigma_{k}^{(t+1), 2}=\frac{\lambda_{k}^{2} \sigma_{k}^{(t), 2}}{\lambda_{k}^{2}+\sigma_{k}^{(t), 2}}
\end{gathered}
$$

Knowledge gradient under a simple example

Under the normal model with known variance, we have that

$$
\begin{gathered}
\mathrm{KG}^{(t)}(x)=\mathrm{E}\left[\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t+1)}-\max _{x^{\prime} \in \mathcal{X}} \theta_{x^{\prime}}^{(t)} \mid x^{(t+1)}=x\right] \\
=\tilde{\sigma}_{k}^{(t)} g\left(\xi_{k}^{(t)}\right),
\end{gathered}
$$

where

- $\tilde{\sigma}_{k}^{(t)}=\frac{\sigma_{k}^{(t), 2}}{\sqrt{\lambda_{k}^{2}+\sigma_{k}^{(t), 2}}}$
- $\xi_{k}^{(t)}=-\left|\frac{\max _{j \neq k} \theta_{j}^{(t)}-\theta_{k}^{(t)}}{\tilde{\sigma}_{k}^{(t)}}\right|$
- $g(u)=u \Phi(u)+\phi(u)$.

Expected Improvement

The expected improvement acquisition function is given by

$$
\mathrm{EI}^{(t)}(x)=\mathrm{E}\left[\max \left\{\mu_{x}-\max _{j} \theta_{j}^{(t)}, 0\right\}\right]
$$

Under the normal model,

$$
\begin{aligned}
& \mu_{x} \sim N\left(\theta_{x}^{(t)}, \sigma_{x}^{(t), 2}\right) \\
& Y_{x} \mid \mu_{x} \sim N\left(\mu_{x}, \lambda_{x}^{2}\right)
\end{aligned}
$$

for $k=1, \ldots, K$. We have that,

$$
\mathrm{EI}^{(t)}(x)=\sigma_{x}^{(t)} g\left(-\frac{\left|\theta_{x}^{(t)}-\max _{j} \theta_{j}^{(t)}\right|}{\sigma_{x}^{(t)}}\right)
$$

Efficient Global Optimization, Jones et al, 1998

- Model: Gaussian process
- Acquisition function: Expected improvement

Gaussian Process (GP)

- Assume

$$
\begin{equation*}
y(\mathbf{x})=\mathbf{f}\left(\mathbf{x}_{i}\right) \boldsymbol{\beta}+\epsilon\left(\mathbf{x}_{i}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{f}\left(\mathbf{x}_{i}\right)=\mathbf{f}_{i}$ is a pre-specified $1 \times p$ regressor, $\boldsymbol{\beta}$ is the vector of unknown regression parameters, $\epsilon\left(\mathbf{x}_{i}\right)$ is a stationary Gaussian process with mean zero and covariance

$$
\begin{equation*}
\operatorname{cov}\left[\epsilon\left(\mathbf{x}_{i}\right), \epsilon\left(\mathbf{x}_{j}\right)\right]=\sigma^{2} R\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right), \text { for } i \neq j \tag{2}
\end{equation*}
$$

and R is a correlation function.

Correlation Functions

- The choice of R determines the smoothness of $\hat{y}(\mathbf{x})$.
- One popular example:

$$
\begin{equation*}
R\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=R\left(\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right)=\exp \left(-\sum_{k=1}^{p} \theta_{k}\left|x_{i k}-x_{j k}\right|^{q_{k}}\right) \tag{3}
\end{equation*}
$$

where the subscript k denotes the k th dimension.

- Consider $R(\mathbf{h})$ for $\mathbf{h} \in \mathbb{R}^{p}$.

Comparison of Correlation Functions

Comparison of different exponential power correlation functions with $\theta=2$

Comparison of Correlation Functions

Comparison of different exponential power correlation functions with $q=2$

Comparison of Correlation Functions

A Gaussian process with $q=2$ and $\theta_{k}=.5$

Comparison of Correlation Functions

A Gaussian process with $q=2$ and $\theta_{k}=2$

Comparison of Correlation Functions

A Gaussian process with $q=1$ and $\theta_{k}=0.5$

Comparison of Correlation Functions

A Gaussian process with $q=1$ and $\theta_{k}=2$

Estimation of GP Parameters

- The unknown parameters involved in (1) are $\sigma^{2}, \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right)$ and β.
- Given $\boldsymbol{\theta}$, the estimated σ^{2} and β are

$$
\begin{align*}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{F}^{\top} \mathbf{R}^{-1} \mathbf{F}\right)^{-1} \mathbf{F}^{\top} \mathbf{R}^{-1} \mathbf{Y} \tag{4}\\
\hat{\sigma}^{2} & =\frac{(\mathbf{Y}-\mathbf{F} \hat{\boldsymbol{\beta}})^{\top} \mathbf{R}^{-1}(\mathbf{Y}-\mathbf{F} \hat{\boldsymbol{\beta}})}{n} \tag{5}
\end{align*}
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \mathbf{R}$ is the $n \times n$ matrix with entries $R\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ defined in (3) for $i, j=1, \ldots, n$ and $\mathbf{F}=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right]$.

- Given $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma}^{2}$, the correlation parameters $\boldsymbol{\theta}$ can be estimated by maximizing the log likelihood function

$$
\begin{equation*}
-\frac{n}{2} \log \hat{\sigma}^{2}-\frac{1}{2} \log |\mathbf{R}| . \tag{6}
\end{equation*}
$$

Gaussian process (GP)

- We treat the deterministic response $y(\mathbf{x})$ as a realization of a Gaussian stochastic process

$$
Y(\mathbf{x})=\mu+Z(\mathbf{x}) .
$$

Gaussian process (GP)

- We treat the deterministic response $y(\mathbf{x})$ as a realization of a Gaussian stochastic process

$$
Y(\mathbf{x})=\mu+Z(\mathbf{x}) .
$$

- μ is the constant mean.

Gaussian process (GP)

- We treat the deterministic response $y(\mathbf{x})$ as a realization of a Gaussian stochastic process

$$
Y(\mathbf{x})=\mu+Z(\mathbf{x})
$$

- μ is the constant mean.
- $Z(\mathbf{x})$ is a zero-mean, stationary, Gaussian stochastic process with variance σ^{2} and correlation function $r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.

Gaussian process (GP)

- We treat the deterministic response $y(\mathbf{x})$ as a realization of a Gaussian stochastic process

$$
Y(\mathbf{x})=\mu+Z(\mathbf{x}) .
$$

- μ is the constant mean.
- $Z(\mathbf{x})$ is a zero-mean, stationary, Gaussian stochastic process with variance σ^{2} and correlation function $r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.
- A popular choice:

$$
r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\sum_{k=1}^{p} \theta_{k}\left|x_{k}-x_{k}^{\prime}\right|^{p_{k}}\right\}
$$

Gaussian process (GP)

- We treat the deterministic response $y(\mathbf{x})$ as a realization of a Gaussian stochastic process

$$
Y(\mathbf{x})=\mu+Z(\mathbf{x}) .
$$

- μ is the constant mean.
- $Z(\mathbf{x})$ is a zero-mean, stationary, Gaussian stochastic process with variance σ^{2} and correlation function $r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$.
- A popular choice:

$$
r\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left\{-\sum_{k=1}^{p} \theta_{k}\left|x_{k}-x_{k}^{\prime}\right|^{p_{k}}\right\}
$$

- This model is also called Kriging, or more specific ordinary Kriging.

Gaussian process (GP)

The BLUP predictor can be expressed by

$$
\hat{y}(\mathbf{x})=\hat{\mu}+\mathbf{r}^{\prime} R^{-1}(\mathbf{y}-\mathbf{1} \hat{\mu})
$$

where

- $\hat{\mu}=\left(\mathbf{1}^{\top} R^{-1} \mathbf{1}\right)^{-1}\left(\mathbf{1}^{\top} R^{-1} \mathbf{y}\right)$
- $\mathbf{r}=\left(r\left(\mathbf{x}, \mathbf{x}_{1}\right), \ldots, r\left(\mathbf{x}, \mathbf{x}_{n}\right)\right)^{\top}$
- R is an $n \times n$ matrix with entries $r\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.

Gaussian process (GP)

The BLUP predictor can be expressed by

$$
\hat{y}(\mathbf{x})=\hat{\mu}+\mathbf{r}^{\prime} R^{-1}(\mathbf{y}-\mathbf{1} \hat{\mu}),
$$

where

- $\hat{\mu}=\left(\mathbf{1}^{\top} R^{-1} \mathbf{1}\right)^{-1}\left(\mathbf{1}^{\top} R^{-1} \mathbf{y}\right)$
- $\mathbf{r}=\left(r\left(\mathbf{x}, \mathbf{x}_{1}\right), \ldots, r\left(\mathbf{x}, \mathbf{x}_{n}\right)\right)^{\top}$
- R is an $n \times n$ matrix with entries $r\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.

By substituting BLUP into $\operatorname{MSE}(\hat{y}(\mathbf{x}))$, we have that

$$
\operatorname{MSE}(\hat{y}(\mathbf{x}))=\sigma^{2}\left(1-\mathbf{r}^{\prime} R^{-1} \mathbf{r}+\frac{\left(1-\mathbf{1}^{\top} R^{-1} \mathbf{r}\right)^{2}}{\mathbf{1}^{\top} R^{-1} \mathbf{1}}\right)
$$

which is the variance of $\hat{y}(\mathbf{x})$.

An Illustration of Interpolator

Expected Improvement

Goal: $\min _{x \in \mathcal{X}} f(\mathbf{x})$, where $f(\mathbf{x})$ is a deterministic blackbox function with inputs \mathbf{x}.
Assume that the prior of $f(\mathbf{x})$ is a GP, denoted by $Y(\mathbf{x})$.
The expected improvement can be expressed by

$$
\begin{gathered}
\mathrm{EI}(\mathbf{x})=\mathrm{E}\left[\max \left(\mathrm{f}_{\min }-\mathrm{Y}(\mathbf{x}), 0\right)\right] \\
=\left(f_{\min }-\hat{y}(\mathbf{x})\right) \Phi\left(\frac{f_{\min }-\hat{y}(\mathbf{x}}{s(\mathbf{x})}\right)+s(\mathbf{x}) \phi\left(\frac{f_{\min }-\hat{y}(\mathbf{x})}{s(\mathbf{x})}\right),
\end{gathered}
$$

where $Y(\mathbf{x}) \sim N(\hat{y}(\mathbf{x}), s(\mathbf{x}))$.

Illustration

(a)

(b)

Figure 11. (a) The expected improvement function when only five points have been sampled; (b) the expected improvement function after adding a point at $x=2.8$. In both (a) and (b) the left scale is for the objective function and the right scale is for the expected improvement.

Maximization of El

- We have no concave or convex property of $E l(\mathbf{x})$.
- Develop a branch-and-bound algorithm to maximize $E I(\mathbf{x})$ to guaranteed optimality.

$$
\frac{\partial E l(\mathbf{x})}{\partial \hat{y}(\mathbf{x})}=-\Phi\left(\frac{f_{\min }-\hat{y}(\mathbf{x})}{s(\mathbf{x})}\right)
$$

and

$$
\frac{\partial E I(\mathbf{x})}{\partial s(\mathbf{x})}=\phi\left(\frac{f_{\min }-\hat{y}(\mathbf{x})}{s(\mathbf{x})}\right)
$$

- Because of this monotonicity, to find an upper bound on $E I(\mathbf{x})$ over a box for \mathbf{x} is suffices to find a lower bound on \hat{y} and an upper bound on s over the box.

