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Overview of Bayesian Optimization (BO)

Goal: optimize f (x) over x
f (x) is an expensive to evaluate function.
f (x) is a “black-box”.
The first-order and/or second-order derivatives of f (x) is not
available.

References:
P. Frazier, "A Tutorial on Bayesian Optimization"
https://arxiv.org/abs/1807.02811
Shahriari, Bobak, et al. "Taking the human out of the loop: A
review of Bayesian optimization." Proceedings of the IEEE 104.1
(2015): 148-175.
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Generic BO Algorithm

Elicit a prior distribution on the function f

while (budget is not exhausted) {

Find x that maximizes Acquisition(x, prior)

Evaluate f (x) at x

Find the posterior distribution, and update the prior distribution.
}
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Basic Concepts

How to update knowledge, as data is obtained?
Prior distribution: what you know about parameter β, excluding
the information in the data – denoted by π(β).
Likelihood: based on modeling assumptions, how [relatively] likely
the data Y are if the truth is β – denoted L(Y |β)

So how to get a posterior distribution: stating what we know about β,
combining the prior with the data denoted p(β|Y ).
Bayes Theorem used for inference tells us to multiply:

p(β|Y ) ∝ L(Y |β)π(β)

Essentially, Posterior ∝ Likelihood × Prior.
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Generic Bayesian Update Algorithm

Given a prior distribution π(0)(β) for the target parameter β, and a
model assumption L(Y |β)

For t = 1, . . . ,N {

obtain data Y (t)

find the posterior p(β|Y (t)) ∝ L(Y (t)|β)π(t−1)(β)

update π(t)(β)← p(β|Y (t))
}
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A Simple Example: Normal Prior with Known Variance

Goal: learning parameter µ
Prior: µ ∼ N(θ(0), σ(0),2)

Data: Y |µ ∼ N(µ, λ2) where λ is known.
Posterior: p(µ|Y ) ∝ L(Y |µ)π(µ) is also a normal distribution.
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Acquisition functions

Improvement-based policies: expected improvement, knowledge
gradient,...
Information-based policies: Thompson sampling
...
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Getting into some details... with a simple example

A collection of finite alternatives X = {1, . . . ,M}

Problem of Interests:
maxx∈Xµx

where µx is the unknown true performance of alternative x .
The true performance µx can not be directly measured, but can be
estimated through observation:

yx = µx + εx ,

where εx ∼ N(0, σ2).

Reference: A Knowledge-Gradient Policy for Sequential Information
Collection P.I. Frazier, W.B. Powell & S. Dayanik. SIAM Journal on
Control and Optimization, 2008.
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A simple example

Generating an output yx is expensive.

So we have a budget: a total number of N observations.

Research Question: how to split the N among M alternatives?

Keep in mind:
maxx∈Xµx
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A simple example: statistical modeling

Setup the prior belief about µx

µx ∼ N
(
θ
(0)
x , (σ

(0)
x )2

)
independent with each other over X .

Assume that we collect the outputs yx1 , . . . , yxN are collected one
by one.
When the new observation yx (t) arrives, we find the posterior
distribution of µx given yx (t)

µx |yx (t) ∼ N
(
θ
(t)
x , (σ

(t)
x )2

)
,

In the end, find maxx∈X θ
(N)
x
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Knowledge gradient under a simple example

Idea: choose x which provides the maximum expected
“improvement” to the target problem:

maxx∈Xµx ,

where X contains K elements.

The Knowledge gradient:

KG(t)(x) = E[maxx ′∈X θ
(t+1)
x ′ −maxx ′∈X θ

(t)
x ′ |x (t+1) = x ],

where the expectation is taken with respect to the posterior
predictive distribution of Y (t+1)

x .
Maximize KG(t)(x) over X to select the alternative for new
experiment.
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Knowledge gradient under a simple example

K alternatives
For k = 1, . . . ,K

µk ∼ N(θ
(0)
k , σ

(0),2
k )

Yk |µk ∼ N(µk , λ
2
k ),

where λ2
k is known.

Independence between alternatives.
Model update (if sample from the k -th alternative at step t + 1):

θ
(t+1)
k = θ

(t)
k +

σ
(t),2
k

λ2
k + σ

(t),2
k

(Y (t+1)
k − θ(t)k )

σ
(t+1),2
k =

λ2
kσ

(t),2
k

λ2
k + σ

(t),2
k
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Knowledge gradient under a simple example

Under the normal model with known variance, we have that

KG(t)(x) = E[maxx ′∈X θ
(t+1)
x ′ −maxx ′∈X θ

(t)
x ′ |x (t+1) = x ]

= σ̃
(t)
k g(ξ

(t)
k ),

where

σ̃
(t)
k =

σ
(t),2
k√

λ2
k+σ

(t),2
k

ξ
(t)
k = −

∣∣∣∣maxj 6=kθ
(t)
j −θ

(t)
k

σ̃
(t)
k

∣∣∣∣
g(u) = uΦ(u) + φ(u).
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Expected Improvement

The expected improvement acquisition function is given by

EI(t)(x) = E
[
max{µx −maxjθ

(t)
j ,0}

]
Under the normal model,

µx ∼ N(θ
(t)
x , σ

(t),2
x )

Yx |µx ∼ N(µx , λ
2
x ),

for k = 1, . . . ,K . We have that,

EI(t)(x) = σ
(t)
x g

−|θ(t)x −maxjθ
(t)
j |

σ
(t)
x


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Efficient Global Optimization, Jones et al, 1998

Model: Gaussian process
Acquisition function: Expected improvement
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Gaussian Process (GP)

Assume
y(x) = f(xi)β + ε(xi), (1)

where f(xi) = fi is a pre-specified 1× p regressor, β is the vector
of unknown regression parameters, ε(xi) is a stationary Gaussian
process with mean zero and covariance

cov
[
ε(xi), ε(xj)

]
= σ2R(xi ,xj), for i 6= j , (2)

and R is a correlation function.
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Correlation Functions

The choice of R determines the smoothness of ŷ(x).
One popular example:

R(xi ,xj) = R(|xi − xj |) = exp

(
−

p∑
k=1

θk |xik − xjk |qk

)
, (3)

where the subscript k denotes the k th dimension.
Consider R(h) for h ∈ Rp.
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Comparison of Correlation Functions
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Comparison of Correlation Functions

A Gaussian process with q = 2 and θk = .5
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Comparison of Correlation Functions

A Gaussian process with q = 2 and θk = 2
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Comparison of Correlation Functions

A Gaussian process with q = 1 and θk = 0.5
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Comparison of Correlation Functions

A Gaussian process with q = 1 and θk = 2
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Estimation of GP Parameters

The unknown parameters involved in (1) are σ2, θ = (θ1, . . . , θd )
and β.
Given θ, the estimated σ2 and β are

β̂ =
(

F>R−1F
)−1

F>R−1Y, (4)

σ̂2 =
(Y− Fβ̂)>R−1(Y− Fβ̂)

n
, (5)

where Y = (Y1, . . . ,Yn), R is the n × n matrix with entries R(xi ,xj)
defined in (3) for i , j = 1, . . . ,n and F = [f1, . . . , fn].
Given β̂ and σ̂2, the correlation parameters θ can be estimated by
maximizing the log likelihood function

− n
2

log σ̂2 − 1
2

log |R|. (6)
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Gaussian process (GP)

We treat the deterministic response y(x) as a realization of a
Gaussian stochastic process

Y (x) = µ+ Z (x).

µ is the constant mean.
Z (x) is a zero-mean, stationary, Gaussian stochastic process with
variance σ2 and correlation function r(x,x′).
A popular choice:

r(x,x′) = exp

{
−

p∑
k=1

θk |xk − x ′k |pk

}

This model is also called Kriging, or more specific ordinary
Kriging.
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Gaussian process (GP)

The BLUP predictor can be expressed by

ŷ(x) = µ̂+ r′R−1(y− 1µ̂),

where
µ̂ = (1>R−11)−1(1>R−1y)

r = (r(x,x1), . . . , r(x,xn))>

R is an n × n matrix with entries r(xi ,xj).

By substituting BLUP into MSE(ŷ(x)), we have that

MSE(ŷ(x)) = σ2
(

1− r′R−1r +
(1− 1>R−1r)2

1>R−11

)
which is the variance of ŷ(x).
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An Illustration of Interpolator
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Expected Improvement

Goal: minx∈X f (x), where f (x) is a deterministic blackbox function with
inputs x.
Assume that the prior of f (x) is a GP, denoted by Y (x).
The expected improvement can be expressed by

EI(x) = E[max(fmin − Y(x), 0)]

= (fmin − ŷ(x))Φ

(
fmin − ŷ(x

s(x)

)
+ s(x)φ

(
fmin − ŷ(x)

s(x)

)
,

where Y (x) ∼ N(ŷ(x), s(x)).
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Illustration
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Maximization of EI

We have no concave or convex property of EI(x).
Develop a branch-and-bound algorithm to maximize EI(x) to
guaranteed optimality.

∂EI(x)

∂ŷ(x)
= −Φ

(
fmin − ŷ(x)

s(x)

)
and

∂EI(x)

∂s(x)
= φ

(
fmin − ŷ(x)

s(x)

)
Because of this monotonicity, to find an upper bound on EI(x)
over a box for x is suffices to find a lower bound on ŷ and an
upper bound on s over the box.
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