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Overview of Bayesian Optimization (BO)

Goal: optimize f(x) over x
@ f(x) is an expensive to evaluate function.
@ f(x) is a “black-box”.
@ The first-order and/or second-order derivatives of f(x) is not
available.

References:

@ P. Frazier, "A Tutorial on Bayesian Optimization"
https://arxiv.org/abs/1807.02811

@ Shabhriari, Bobak, et al. "Taking the human out of the loop: A
review of Bayesian optimization." Proceedings of the IEEE 104.1
(2015): 148-175.
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Generic BO Algorithm

Elicit a prior distribution on the function f
while (budget is not exhausted) {
Find x that maximizes Acquisition(x, prior)
Evaluate f(x) at x

Find the posterior distribution, and update the prior distribution.
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Basic Concepts

How to update knowledge, as data is obtained?

@ Prior distribution: what you know about parameter /3, excluding
the information in the data — denoted by = ().

o Likelihood: based on modeling assumptions, how [relatively] likely
the data Y are if the truth is 5 — denoted L(Y|3)

So how to get a posterior distribution: stating what we know about g,
combining the prior with the data denoted p(5]Y).
Bayes Theorem used for inference tells us to multiply:

p(BIY) o< L(Y|B)m ()

Essentially, Posterior o Likelihood x Prior.
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Generic Bayesian Update Algorithm

Given a prior distribution 7(9)(3) for the target parameter 3, and a
model assumption L(Y|f)

Fort=1,...,N{
obtain data Y
find the posterior p(8|Y(")) o« L(Y(D|B)r(t=1)(B)

update ©(0(8) < p(B| )
}
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A Simple Example: Normal Prior with Known Variance

@ Goal: learning parameter p

@ Prior: ju ~ N(0(® 5(0):2)

o Data: Y|u ~ N(u, \2) where ) is known.

@ Posterior: p(u|Y) o< L(Y|u)m(1) is also a normal distribution.
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Acquisition functions

@ Improvement-based policies: expected improvement, knowledge
gradient,...

@ Information-based policies: Thompson sampling
° ...
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Getting into some detalils... with a simple example

@ A collection of finite alternatives X = {1,..., M}
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Getting into some detalils... with a simple example

@ A collection of finite alternatives X = {1,..., M}
@ Problem of Interests:
maXyex fx

where iy is the unknown true performance of alternative x.
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Getting into some details... with a simple example

@ A collection of finite alternatives X = {1,..., M}
@ Problem of Interests:
maXxex tx
where iy is the unknown true performance of alternative x.

@ The true performance uy can not be directly measured, but can be
estimated through observation:

Yx = Ux + €x,
where ¢, ~ N(0, 02).

Reference: A Knowledge-Gradient Policy for Sequential Information
Collection P.I. Frazier, W.B. Powell & S. Dayanik. SIAM Journal on
Control and Optimization, 2008.
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A simple example

@ Generating an output yy is expensive.
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A simple example

@ Generating an output yy is expensive.

@ So we have a budget: a total number of N observations.
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A simple example

@ Generating an output yy is expensive.
@ So we have a budget: a total number of N observations.

@ Research Question: how to split the N among M alternatives?
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A simple example

@ Generating an output yy is expensive.
@ So we have a budget: a total number of N observations.
@ Research Question: how to split the N among M alternatives?

@ Keep in mind:
maXyex fhx
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A simple example: statistical modeling

@ Setup the prior belief about 1
pix ~ N (0,((0), (0)((0))2)

independent with each other over X.
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A simple example: statistical modeling

@ Setup the prior belief about 1
pix ~ N (9,((0), (0)((0))2)

independent with each other over X.

@ Assume that we collect the outputs y,+, ..., y,~ are collected one
by one.
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A simple example: statistical modeling

@ Setup the prior belief about 1
pix ~ N (0,((0), (J)((O))z)

independent with each other over X.

@ Assume that we collect the outputs y,+, ..., y,~ are collected one
by one.

@ When the new observation y, arrives, we find the posterior
distribution of px given y,

pixl v ~ N (687, (8)2)
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A simple example: statistical modeling

@ Setup the prior belief about 1
pix ~ N (0,((0), (J)((O))z)

independent with each other over X.

@ Assume that we collect the outputs y,+, ..., y,~ are collected one
by one.

@ When the new observation y, arrives, we find the posterior
distribution of px given y,

pixl v ~ N (687, (8)2)

o In the end, find maxyex0\"
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Knowledge gradient under a simple example

@ |dea: choose x which provides the maximum expected
“improvement” to the target problem:

maXxex Hx;

where X contains K elements.

Bayesian Optimization: A Brief Review 11/30



Knowledge gradient under a simple example

@ |dea: choose x which provides the maximum expected
“improvement” to the target problem:

maXxex Hx;

where X contains K elements.
@ The Knowledge gradient:

KGO (x) = E[maXX’eXGXt/H) _ maXx’eXH,((l:)|X(t+1) — x],

where the expectation is taken with respect to the posterior
predictive distribution of Y.
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Knowledge gradient under a simple example

@ |dea: choose x which provides the maximum expected
“improvement” to the target problem:

maXxex Hx;

where X contains K elements.
@ The Knowledge gradient:

KG(t)(x) = E[maxycxf t+1) maXx'eXH,((l:)|X(t+1) — x],

X/
where the expectation is taken with respect to the posterior
predictive distribution of Y.

o Maximize KG((x) over X to select the alternative for new
experiment.
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Knowledge gradient under a simple example

@ K alternatives
@ Fork=1,... K
[k ~ N(H;((O), U;((o)’z)

Yicltk ~ N, %),
where )2 is known.
@ Independence between alternatives.
@ Model update (if sample from the k-th alternative at step f + 1):

(t+1) _ p(t) Uff)’z
O =0kt 5 2
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Knowledge gradient under a simple example

Under the normal model with known variance, we have that

KGU(x) = E[maxx'eé\(‘g,((l:+1) - maxxzexﬂ)((t,)]x(t+1) = X]

() (D)
=0y g(fk )7
where
(1),2
° 5 = s
)\k—l—ak ’
o el — [ maums’ 0
kK = G
Ok

© g(u) = ud(u) + ¢(u).
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Expected Improvement

The expected improvement acquisition function is given by
t
EI(x) =E [max{ux — max;\", 0}]
Under the normal model,
x ~ N(0S, 0$0%)

Yilpx ~ N(MXa)\)Z()v
fork =1,..., K. We have that,

(0 _ ()

a0
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Efficient Global Optimization, Jones et al, 1998

@ Model: Gaussian process
@ Acquisition function: Expected improvement
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Gaussian Process (GP)

@ Assume
y(x) = f(x;)8 + e(x;), (1)

where f(x;) = f; is a pre-specified 1 x p regressor, 3 is the vector
of unknown regression parameters, €(x;) is a stationary Gaussian
process with mean zero and covariance

cov [e(X)),e(x;)] = oR(X;,X;), for i # ], (@)

and R is a correlation function.
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Correlation Functions

@ The choice of R determines the smoothness of j(x).
@ One popular example:

p
R(xi, x;) = R(|x; — X;|) = exp (— > Oklxik — Xjqu"> . 3

k=1

where the subscript k denotes the kth dimension.
@ Consider R(h) for h € RP.
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Comparison of Correlation Functions

Comparison of different exponential power correlation functions with 6 = 2
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Comparison of Correlation Functions

w N =

Comparison of different exponential power correlation functions with g = 2
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Comparison of Correlation Functions
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A Gaussian process with g = 2 and 6= .5
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Comparison of Correlation Functions
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Comparison of Correlation Functions
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Comparison of Correlation Functions
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Estimation of GP Parameters

@ The unknown parameters involved in (1) are 02, 8 = (64,...,64)
and 5.
@ Given 0, the estimated 02 and 3 are
. —1
B = (FFR'F) FTRY, (4)
_EAVTR-1(V _ EZ
5’2 _ (Y F/@) R (Y Fﬁ), (5)
n
where Y = (Yj,..., Yp), Ris the n x n matrix with entries R(x;, X;)

definedin (3)fori,j=1,....,nand F = [f,... f,].
@ Given 3 and 42, the correlation parameters 6 can be estimated by
maximizing the log likelihood function

n

1
A2 0
5 log & 5 log |R|. (6)
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Gaussian process (GP)

@ We treat the deterministic response y(X) as a realization of a
Gaussian stochastic process

Y(X) = p+ Z(x).
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Gaussian process (GP)

@ We treat the deterministic response y(X) as a realization of a
Gaussian stochastic process

Y(X) = p+ Z(x).

@ u is the constant mean.
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Gaussian process (GP)

@ We treat the deterministic response y(X) as a realization of a
Gaussian stochastic process

Y(X) = p+ Z(x).

@ u is the constant mean.

@ Z(x) is a zero-mean, stationary, Gaussian stochastic process with
variance o2 and correlation function r(x, x’).
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Gaussian process (GP)

@ We treat the deterministic response y(X) as a realization of a
Gaussian stochastic process

Y(X) = p+ Z(x).

@ u is the constant mean.

@ Z(x) is a zero-mean, stationary, Gaussian stochastic process with
variance o2 and correlation function r(x, x’).

@ A popular choice:

r(x,x') —exp{ Zek|xk—xk|pk}
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Gaussian process (GP)

@ We treat the deterministic response y(X) as a realization of a
Gaussian stochastic process

Y(X) = p+ Z(x).

@ u is the constant mean.

@ Z(x) is a zero-mean, stationary, Gaussian stochastic process with
variance o2 and correlation function r(x, x’).

@ A popular choice:
r(x,x') = exp { Zek|xk — xk|pk}

@ This model is also called Kriging, or more specific ordinary
Kriging.
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Gaussian process (GP)

The BLUP predictor can be expressed by

yx)=p+rR(y - 1p),

where
o = (TR (TR YY)
or= (r(X,X1),...,r(x,Xn))T

@ Ris an n x n matrix with entries r(x;, X;).
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Gaussian process (GP)

The BLUP predictor can be expressed by

yx)=p+rR(y - 1p),

where
° fi= (1TR-11)-1(1TR-1y>
o r=(r(xxq),....r(x,x))"

@ Risannxn matrlx with entries r(x;, X;).
By substituting BLUP into MSE(J(x)), we have that

A > 1 (1-1TR'r)?
MSE(y(X)) =0 (1 — I’/Fw’ r+ W

which is the variance of y(x).
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An lllustration of Interpolator

Model Prediction

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X (Input Variable)
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Expected Improvement

Goal: minye v f(X), where f(X) is a deterministic blackbox function with
inputs x.

Assume that the prior of f(x) is a GP, denoted by Y(x).

The expected improvement can be expressed by

EI(X) = E[max(fmin — Y(X), 0)]
= (tn = 3000 (22 I g (o F00),
where Y(x) ~ N(y(x), s(x)).
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lllustration
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Figure 11. (a) The expected improvement function when only five points have been sampled,;

(b) the expected improvement function after adding a point at x = 2.8. In both (a) and (b) the
left scale is for the objective function and the right scale is for the expected improvement.
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Maximization of El

@ We have no concave or convex property of E/(X).

@ Develop a branch-and-bound algorithm to maximize E/(x) to
guaranteed optimality.

8E/(X) _ fmin — }A/(x)
yx) ~° ( ) )

and

8E/(X) — fmin - j\/(X)
05(x) s(x)
@ Because of this monotonicity, to find an upper bound on E/(x)
over a box for x is suffices to find a lower bound on y and an
upper bound on s over the box.
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