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About Clemson UQ Group

» Initiated by Dr. Andrew Brown in 2019 Fall.

» Founding group members: Drs. Qiong Zhang, Andrew Brown,
Whitney Huang

» We think it is an interesting and promising research area and
we would like to invite you to join us!



What is Uncertainty Quantification (UQ)?
reX f:&=Y y = f(x)

Computer Model
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Design and Analysis of Computer
Experiments

Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn

Abstract. Many scienti: ); are now i ij d by complex
computer models or codes. A computer experiment is a number of runs of
the code with various inputs. A feature of many computer experiments is
that the output is deterministic—rerunning the code with the same inputs
gives identical observations. Often, the codes are computationally expensive
to run, and a common objective of an experiment is to fit a cheaper predictor
of the output to the data. Our h is to model the d inistic output
as the realization of a stochastic process, thereby providing a statistical
basis for designing experiments (choosing the inputs) for efficient predic-
tion. With this model, esti of i of dicti are also
available. Recent work in this area is reviewed, a number of applications

are and we d our hodology with an example.




Examples of Computer Models
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REALITY
(EXPERIMENTS)

validation:
comparing model predictions to experiments
to instill confidence in the model

Are we solving the right equations?
MATH MODEL approximates COMPUTER MODEL
(GOVERNING EQUATIONS) PP (DISCRETIZATION)

» “Essentially, all models are wrong, but some are
useful”—




REALITY
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validation:
comparing model predictions to experiments
to instill confidence in the model

Are we solving the right equations?
MATH MODEL approximates COMPUTER MODEL
(GOVERNING EQUATIONS) PP (DISCRETIZATION)

» “Essentially, all models are wrong, but some are
useful"—George E.P. Box

> “Experimental results are believed by everyone, except for the
person who ran the experiment”

» “Computational results are believed by no one, except the
person who wrote the code”



Computer Model Calibration

J. R. Statist. Soc. B (2001)
63, Part 3, pp. 425-464

Bayesian calibration of computer models

Marc C. Kennedy and Anthony O’Hagan
University of Sheffield, UK

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, December 13th, 2000, Professor P. J. Diggle in the Chair]

Summary. We consider prediction and uncertainty analysis for systems which are approximated
using complex mathematical models. Such models, implemented as computer codes, are often
generic in the sense that by a suitable choice of some of the model’s input parameters the code can
be used to predict the behaviour of the system in a variety of specific applications. However, in any
specific application the values of necessary parameters may be unknown. In this case, physical
observations of the system in the specific context are used to learn about the unknown parameters.
The process of fitting the model to the observed data by adjusting the parameters is known as
calibration. Calibration is typically effected by ad hoc fitting, and after calibration the model is used,
with the fitted input values, to predict the future behaviour of the system. We present a Bayesian
calibration technique which improves on this traditional approach in two respects. First, the pre-
dictions allow for all sources of uncertainty, including the remaining uncertainty over the fitted
parameters. Second, they attempt to correct for any inadequacy of the model which is revealed by a
discrepancy between the observed data and the model predictions from even the best-fitting
parameter values. The method is illustrated by using data from a nuclear radiation release at Tomsk,
and from a more complex simulated nuclear accident exercise.



COMPUTER MODEL
(DISCRETIZATION)

MATH MODEL

(GOVERNING EQUATIONS) approximates

verification:
ensuring the computer model is getting sufficiently
close to the solution of the governing equations

Are we solving the equations right?

Staistial Scence.
2019, Vol 34, No. 1, 122
tps?idooxg/10.1214/18-STS660

© Insitu of Mathematieal Sttistics, 2019

Probabilistic Integration: A Role in
Statistical Computation?’

Frangois-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne and
Dino Sejdinovic

Abstract. A research frontier has emerged in scientific computation,
wherein discretisation error is regarded as a source of epistemic uncertainty
that can be modelled. This raises several statistical challenges, including the
design of statistical methods that enable the coherent propagation of proba-
bilities through a (possibly deterministic) computational work-flow, in order
to assess the impact of discretisation error on the computer output. This paper

ines the case for ilistic ical methods in routine statistical
computation. Our focus is on numerical integration, where a probabilistic
integrator is equipped with a full distribution over its output that reflects
the fact that the integrand has been discretised. Our main technical contri-
bution is to establish, for the first time, rates of posterior contraction for one
such method. Several substantial applications are provided for illustration
and critical ion, including les from statistical modelling, com-
puter graphics and a computer model for an oil reservoir.
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Efficient Global Optimization of Expensive
Black-Box Functions

DONALD R.JONES', MATTHIAS SCHONLAU>* and WILLIAM J.
WELCH**

1Opemfion: Research Department, General Motors R&D Operations, Warren, MI, USA; 2National
Institute of Statistical Sciences, Research Triangle Park, NC, USA; }Deparlrrtem of Statistics and
Actuarial Science and The Institute for Improvement in Quality and Productivity, University of
Waterloo, Waterloo, Ontario, Canada

(Accepted in final form 30 June 1998)

Abstract. In many engineering optimization problems, the number of function evaluations is severely
limited by time or cost. These problems pose a special challenge to the field of global optimization,
since existing methods often require more function evaluations than can be comfortably afforded
One way to address this challenge is to fit response surfaces to data collected by evaluating the
objective and constraint functions at a few points. These surfaces can then be used for visualization,
tradeoff analysis, and optimization. In this paper, we introduce the reader to a response surface
methodology that is especially good at modeling the nonlinear, multimodal functions that often
occur in engineering. We then show how these approximating functions can be used to construct
an efficient global optimization algorithm with a credible stopping rule. The key to using response
surfaces for global optimization lies in balancing the need to exploit the approximating surface (by
sampling where it is minimized) with the need to improve the approximation (by sampling where
prediction error may be high). Striking this balance requires solving certain auxiliary problems which
have previously been considered intractable, but we show how these computational obstacles can be
overcome.



What is UQ?

One definition of “Capital UQ":

“The synergy between Statistics, Applied Mathematics, and
domain sciences required to quantify uncertainties in inputs
and the quantity of interest when models are too compu-
tationally complex to permit sole reliance on sampling-based
methods” — Ralph Smith, Distinguished University Professor,
NCSU Math

» A Combined Physical-Statistical-Computational Approach to
model input/output relationship

> Use statistical emulators to mimic (computationally extensive)
simulators and to quantify its (epistemic) uncertainty



UQ Resources

> Statistical and Applied Mathematical Sciences Institute
(SAMSI)

> UQ Summer School (Link)
»> Model Uncertainty: Mathematical and Statistical (Link)

> SIAM UQ Activity Group (Link)

» Institute for Mathematics and its Applications (IMA)'s UQ
workshop (Link)

» Isaac Newton Institute Uncertainty quantification for complex
systems: theory and methodologies (Link)

» Robert Gramacy's new book Surrogates (Link)


http://people.stat.sfu.ca/~dbingham/summer-school/
https://www.samsi.info/programs-and-activities/year-long-research-programs/model-uncertainty-mathematical-statistical-mums/
https://www.siam.org/membership/activity-groups/detail/uncertainty-quantification
https://www.ima.umn.edu/2014-2015/ND6.15-26.15
https://www.newton.ac.uk/event/unq
https://bookdown.org/rbg/surrogates/

Further Readings

)

)

Santner, T. J., Williams, B. J., Notz, W.
The Design and Analysis of Computer Experiments.
Springer, 2003.

Smith, R. C.
Uncertainty quantification: theory, implementation, and
applications.
SIAM, 2014.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P.
Design and analysis of computer experiments
Statistical science, 409-423, 1989

Kennedy, M. C., & O'Hagan, A.

Bayesian calibration of computer models (with Discussion)
Journal of the Royal Statistical Society: Series B, 425-464,
2001



